检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Turbo中的数据执行编辑操作。 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,规格推荐选择“Ascend: 8*ascend-snt9b”。 图1 Notebook中选择自定义镜像与规格
查询镜像组列表 GET /v1/{project_id}/images/group modelarts:image:listGroup - √ √ 注册自定义镜像 POST /v1/{project_id}/images modelarts:image:register - √ √ 删除自定义镜像
参数 说明 “元模型来源” 选择“从训练中选择”。 在“选择训练作业”右侧下拉框中选择当前账号下已完成运行的训练作业。 “动态加载”:用于实现快速部署和快速更新模型。如果勾选动态加载,则模型文件和运行时依赖仅在实际部署时拉取。当单个模型文件大小超过5GB时,必须配置“动态加载”。
参见•针对“物体检测”数据集。 相关问题 智能标注失败,如何处理? 当前智能标注为免费使用阶段,当系统的标注任务过多时,因免费资源有限,导致任务失败,请您重新创建智能标注任务或建议您避开高峰期使用。 智能标注时间过长,如何处理? 当前智能标注为免费使用阶段,当系统的标注任务过多时
其可见该资产。 管理模型可用范围 仅当发布模型时,“可用范围”启用“申请用户可用”时,才支持管理模型的可用范围。管理操作包含如何添加可使用资产的新用户、如何审批用户申请使用资产的请求。 添加可使用资产的新用户。 模型发布成功后,如果模型所有者要新增可使用资产的新用户,则可以在模型详情页添加新用户。
可选项。用于指定DeepSpeed的配置文件相对或绝对路径。DeepSpeed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。
可选项。用于指定DeepSpeed的配置文件相对或绝对路径。DeepSpeed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。
ndSpore-Lite迁移路线进行介绍。使用ascend-vllm路线的迁移指导会在后续提供,您可以从上面的案例中下载相关代码并直接参考实现源码。 父主题: GPU推理业务迁移至昇腾的通用指导
Lite提供的模型convertor工具可以支持主流的模型格式到MindIR的格式转换,用户需要导出对应的模型文件,推荐导出为ONNX格式。 如何导出ONNX模型 PyTorch转ONNX,操作指导请见此处。 PyTorch导出ONNX模型样例如下: import torch import
等配置策略,通过在硬件上的充分测试,确保其兼容性和性能最合适。 方便自定义,预置镜像已经在SWR仓库中,通过对预置镜像的扩展完成自定义镜像注册。 安全可信,基于安全加固最佳实践,访问策略、用户权限划分、开发软件漏洞扫描、操作系统安全加固等方式,确保镜像使用的安全性。 ModelArts的自定义镜像使用场景
移Standard专属资源池和网络至其他工作空间将资源池移动到对应的工作空间下。 专属资源池可通过标签来进行管理,具体可参见使用TMS标签实现资源分组管理管理专属资源池标签。 当不再需要使用专属资源池时,您可参考释放Standard专属资源池和删除网络删除专属资源池。 父主题: ModelArts
自助专属池网络打通:可以在ModelArts管理控制台自行创建和管理专属资源池所属的网络。若需要在专属资源池的任务中访问自己VPC上的资源,可通过“打通VPC”来实现。 更加完善的集群信息:全新改版的专属资源池详情页面中,提供了作业、节点、资源监控等更加全面的集群信息,可帮助您及时了解集群现状,更好的规划使用资源。
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
用途,可选值为TRAIN、EVAL、TEST、INFERENCE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy as np from
cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在ModelArts的开发环境中,使用SDK调测单机和多机分布式训练作业。 父主题: 分布式模型训练
准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch
GBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示模型的算法实现类型,如果已在模型配置文件中配置,则可不填。如:predict_analysis、object_detection 、image_classification。
ModelArts的大部分权限管理能力均基于统一身份认证服务(Identity and Access Management,简称IAM)来实现,在您继续往下阅读之前,强烈建议您先行熟悉IAM基本概念,如果能完整理解IAM的所有概念,将更加有助于您理解本文档。 为了支持用户对Mod
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。