检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
精度问题定位过程中,确定性计算不是目的,而是手段。很多场景下需要在确定性计算使能的情况下,进行下一步的精度问题分析定位。Cuda对部分算子实现了确定性计算,但仍有部分算子无法固定。通常需要依赖确定性计算的场景是长稳问题,因为长稳问题需要通过多次长跑来分析Loss情况,这时候如果N
10,可以接受切换MindSpore。 - 业务编程语言、框架、版本。 C++/Python/JAVA等。 例如:业务逻辑使用JAVA,推理服务模块使用C++自定义实现推理框架,Python 3.7等。 - CPU使用率 业务中是否有大量使用CPU的代码,以及日常运行过程中CPU的占用率(占用多少个核心)
customize_service.py依赖的其他文件可以直接放model目录下,需要采用绝对路径方式访问。绝对路径获取请参考绝对路径如何获取。 ModelArts针对多种引擎提供了样例及其示例代码,您可以参考样例编写您的配置文件和推理代码,详情请参见ModelArts样例列
modelarts/ma-cli-profile.yaml。 配置用户名密码鉴权 以在虚拟机上使用ma-cli configure为例,介绍如何配置用户名密码进行鉴权。 以下样例中所有以${}装饰的字符串都代表一个变量,用户可以根据实际情况指定对应的值。 比如${your_password}表示输入用户自己的密码信息。
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
10,可以接受切换MindSpore。 - 业务编程语言、框架、版本。 C++/Python/JAVA等。 例如:业务逻辑使用JAVA,推理服务模块使用C++自定义实现推理框架,Python 3.7等。 - CPU使用率 业务中是否有大量使用CPU的代码,以及日常运行过程中CPU的占用率(占用多少个核心)
可选项。用于指定DeepSpeed的配置文件相对或绝对路径。DeepSpeed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示训练类型。可选择值:[pt、sf、rm、ppo]
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训
Boolean 是否可编辑。 required 否 Boolean 是否必须。 sensitive 否 Boolean 是否敏感。该功能暂未实现。 valid_type 否 String 有效种类。 valid_range 否 Array of strings 有效范围。 表7 I18nDescription
通过专属资源池详情页面,规格页签,查看专属资源池磁盘信息。当服务部署失败,提示磁盘空间不足时,请参考服务部署、启动、升级和修改时,资源不足如何处理? 图2 查看专属资源池磁盘信息 创建模型 使用大模型创建模型,选择从对象存储服务(OBS)中导入,需满足以下参数配置: 采用自定义引擎,开启动态加载
使用Custom引擎时需要符合自定义引擎规范,请参见使用自定义引擎创建模型。 当模型配置了健康检查,部署的服务在收到停止指令后,会延后3分钟才停止。 “动态加载” 用于实现快速部署和快速更新模型。如果勾选“动态加载”,则模型文件和运行时依赖仅在实际部署时拉取。单个模型文件大小超过5GB,需要配置“动态加载”。
业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训