检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite的基础功能和用法。 图2 ResNet50模型迁移到Ascend上进行推理 Stable Diffusion模型迁移到Ascend上进行推理:介绍如何将Stable Diffusion模型通过MSLite进行转换后,迁移在昇腾设备上运行。 图3 Stable Diffusion模型迁移到Ascend上进行推理
性能。 LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。 这种方法主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
st.h5') 通过重写pandas源码API的方式,将该API改造成支持OBS路径的形式。 写h5到OBS = 写h5到本地缓存 + 上传本地缓存到OBS + 删除本地缓存 从OBS读h5 = 下载h5到本地缓存 + 读取本地缓存 + 删除本地缓存 即将以下代码写在运行脚本的
下的“obs_url”表示从OBS桶中选择训练数据的OBS路径。实例中“outputs”中“remote”下的“obs_url”表示上传训练输出至指定OBS路径。 “spec”字段下的“flavor_id”表示训练作业所依赖的规格,使用2记录的flavor_id。“node_co
otebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模
如果已获得委托授权,则可以在权限管理页面中查看到已获得的委托授权信息。 如果未获得委托授权,当打开“添加授权”页面时,ModelArts会提醒您当前用户未配置授权,需联系此IAM用户的管理员账号进行委托授权。 添加授权 登录ModelArts管理控制台,在左侧导航栏选择“系统管理 > 权限管理”,进入“权限管理”页面。
authentication information: decrypt token fail”。请获取正确的token填入X-Auth-Token,进行预测。如何获取Token请参考获取IAM用户Token。 APIG.1009 AppKey和AppSecret不匹配 当服务预测使用的AppKey和
obs:object:GetObject obs:object:PutObject 训练作业启动前下载数据、模型、代码。 训练作业运行中上传日志、模型。 建议配置。 操作步骤 本案例场景为单机单卡场景下创建训练作业,数据和代码存储在OBS服务的并行文件系统下,创建自定义镜像训练作业。
Lite提供的模型convertor工具可以支持主流的模型格式到MindIR的格式转换,用户需要导出对应的模型文件,推荐导出为ONNX格式。 如何导出ONNX模型 PyTorch转ONNX,操作指导请见此处。 PyTorch导出ONNX模型样例如下: import torch import
下载完成后,需要修改权重文件中config.json文件,把model_type字段值改为“deepseekv2”。 方式二:将FP8权重转换为BF16权重 介绍如何将DeepSeek官方发布的FP8权重转换为BF16的权重。用于生产环境的业务推荐使用此方式。具体操作步骤如下。 下载FP8的权重,下载地
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy as np from
cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在ModelArts的开发环境中,使用SDK调测单机和多机分布式训练作业。 父主题: 分布式模型训练
准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。
务器的缓存目录下。 gallery-cli download {repo_id} {文件名} {文件名} 其中,“repo_id”如何获取,文件名如何获取。 如下所示,表示下载文件“config.json”和“merges.txt”到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。
式。本次迁移使用的是静态shape方式进行模型转换。 获取模型shape 由于在后续模型转换时需要知道待转换模型的shape信息,此处指导如何通过训练好的stable diffusion PyTorch模型获取模型shape,主要有如下两种方式获取: 方式一:通过stable d
ormers库注重易用性,屏蔽了大量AI模型开发使用过程中的技术细节,并制定了统一合理的规范。使用者可以便捷地使用、下载模型。同时支持用户上传自己的预训练模型到在线模型资产仓库中,并发布上架给其他用户使用。AI Gallery在原有Transformers库的基础上,融入了对于昇
VS Code:利用ModelArts插件,实现VS Code远程连接Notebook示例完成远程开发,详情请见使用指导。 下文将介绍如何在ModelArts Standard上使用预置镜像创建Notebook实例。 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间
验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,需要进一步做精度调优。下文将分别阐述精度诊断的整体思路和如何借助精度工具进行精度问题的定位。 父主题: PyTorch迁移精度调优