检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。
成分学习 成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。 迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以
介绍 在这篇教程中,我们将构建一个深度学习模型,用于个性化推荐和广告优化。我们将使用TensorFlow和Keras库来实现这一目标。通过这个教程,你将学会如何处理数据、构建和训练模型,并将模型应用于实际的推荐和广告优化任务。 项目结构 首先,让我们定义项目的文件结构: de
称为训练误差(training error),并且我们会降低训练误差。目前为止,我们讨论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误
称为训练误差(training error),并且我们会降低训练误差。目前为止,我们讨论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误
在数字计算机上实现连续数学的根本困难是,我们需要通过有限数量的位模式来表示无限多的实数。这意味着我们在计算机中表示实数时,几乎总会引入一些近似误差。在许多情况下,这仅仅是舍入误差。如果在理论上可行的算法没有被设计为最小化舍入误差的累积,可能就会在实践中失效,因此舍入误差会导致一些问题。一种特别的毁灭性舍入误差是下溢
多层神经网络通常存在像悬崖一样的斜率较大区域,如图8.3所示。这是由于几个较大的权重相乘导致的。遇到斜率极大的悬崖结构时,梯度更新会很大程度地改变参数值,通常会完全跳过这类悬崖结构。不管我们是从上还是从下接近悬崖,情况都很糟糕,但幸运的是我们可以用使用介绍的启发式梯度截断(gradient
多目标跟踪,即Multiple Object Tracking(MOT),也称为Multiple Target Tracking(MTT)。其主要任务是给定一个图像序列,找到图像序列中运动的物体,并将不同帧中的运动物体一一对应(Identity),然后给出不同物体的运动轨迹。这些
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化的主要目的是改善优化,但噪声具有正则化的效果,有时没必要再使用Dropout。
地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习在深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及
少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高度集中。
少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高
少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高度集中。
种背景下,各种开源的深度学习框架开始诞生,这些深度学习框架封装了大部分的底层操作,支持GPU加速,并为用户提供了各种语言的接口,以方便用户使用。随着这些框架的不断发展和优化,文档越来越详细、清晰,显存优化越来越好,接口支持的语言也越来越多。因此现在利用深度学习框架提供的接口,我们
9 使用RMSProp进行优化本节将介绍使用RMSProp进行优化的相关示例代码。RMSProp是由Geoff Hinton提出的(未发表的)自适应学习方法。RMSProp和AdaDelta是在同一时期独立开发的,其目的都是为了解决AdaGrad中学习率急剧下降的问题。RMSPr
在如今的数据驱动时代,数据库的性能优化已经成为每位开发者的必修课。面对日益增长的数据量,尤其是在处理分页查询时,我们常常会感到无从下手。深度分页不仅是一个技术难题,更是直接影响用户体验的关键因素。今天,我想和大家深入探讨MySQL中的深度分页优化,帮助你们在开发中更好地应对这些挑战!💪
学习深度学习是否要先学习完机器学习,对于学习顺序不太了解
设定的需求类型并没有生效:v2=tf.Variable([3,4],tf.float32)tf里的变量和普通编程语言里的变量是有区别的,区别在于tf里的变量设计为学习中自动优化自动调整它的值,一般无需人工进行赋值,所以它的trainable参数默认是启用的,当然如果是要冻结这些值的时候,就不启用它了
签值然后是定义优化器,采用梯度下降优化器,优化的目标是什么?由损失函数评估的损失最小,就是目标。这样写:optimizer=tf.train.GradiantDescentOptimizer().minimize(loss_function)好了,后面就是创建会话和变量初始化tf