检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
post(url, data=body) print(response.content) 由于高速通道特性会缺失负载均衡的能力,因此在多实例时需要自主制定负载均衡策略。 父主题: Standard推理部署
post(url, data=body) print(response.content) 由于高速通道特性会缺失负载均衡的能力,因此在多实例时需要自主制定负载均衡策略。 父主题: 访问在线服务支持的访问通道
ModelArts Edge 为客户提供了统一边缘部署和管理能力,支持统一纳管异构边缘设备,提供AI应用部署、Al应用和节点管理、资源池与负载均衡、应用商用保障等能力,帮助客户快速构建高性价比的边云协同AI解决方案。 适用于边缘部署场景。 ModelArts Edge是白名单功能,如果有试用需求,请提工单申请。
【下线公告】华为云ModelArts MindStudio/ML Studio/ModelBox镜像下线公告 华为云ModelArts服务MindStudio,ML Studio,ModelBox镜像将在2024年6月30日00:00(北京时间)正式退市。 下线范围 下线Region:华为云全部Region
大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 添加环境变量 部署服务时,增加如下环境变量,会将负载均衡的请求亲和策略配置为集群亲和,避免未就绪的服务实例影响预测成功率。 MODELARTS_SERVICE_TRAFFIC_POLICY: cluster
0-147.5. 1.6.h934.eulerosv2r9.x86_64-advanced-f6aefacb-f2d3-4809-b708-6ad0357037f5' { menuentry 'EulerOS (4.18.0-147.5.1.6.h934.eulerosv2r9.x86_64)
DCGM_FI_DEV_SM_CLOCK{gpu="0", UUID="GPU-6ad7ea4c-5517-05e7-0b54-7554cb4374d3"} 1 DCGM_FI_DEV_MEM_CLOCK{gpu="0", UUID="GPU-6ad7ea4c-5517-05e7-0b54-7554cb4374d3"}
_id}/workflows{workflow_id}/service/packages { "pool_id" : "pool-9ad2-04f258c84780d5a52f3bc00dc15aa5e7", "order" : { "id" : "CS2210201956MBE5Z"
of <moxing.framework.file.src.obs.client.ObsClient object at 0x7fddb4ad06d0>> args=('bucket-cv-competition-bj4', 'fangjiemin/output/') kwargs={}
使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件 确保您使用的OBS目录与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击左上角的“创建模型”,进入“创建模型”页面。
团队标注审核。设置是否通过为“true”,评审分数为“A”。 { "comments" : [ { "worker_id" : "8c15ad080d3eabad14037b4eb00d6a6f", "sample_id" : "0d43f9811d3808a3146c673257d4a1dbhh"
持的AI引擎。 已完成训练的模型包,及其对应的推理代码和配置文件,且已上传至OBS目录中。 确保您使用的OBS与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击左上角的“创建模型”,进入“创建模型”页面。
DPO(Direct Preference Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training
提交验收任务的样本评审意见。设置是否通过为“true”,评审分数为“A”。 { "comments" : [ { "worker_id" : "8c15ad080d3eabad14037b4eb00d6a6f", "sample_id" : "09ac49d5b06385849c8769fdcf0f6d60"
启动探针,则默认状态为成功Success。 就绪探针:用于检测应用实例是否已经准备好接收流量。如果就绪探针失败,即实例未准备好,会从服务负载均衡的池中剔除该实例,不会将流量路由到该实例,直到探测成功。 存活探针:用于检测应用实例内应用程序的健康状态。如果存活探针失败,即应用程序不健康,将会自动重启实例。
"worker_tasks" : [ { "email" : "xxx@xxx.com", "worker_id" : "8c15ad080d3eabad14037b4eb00d6a6f", "role" : 0, "task_id" : "tY330MHxV9dqIPVaTRM"
"ModelArts API Dialtest", "resource_id": "e17dd874-b5e0-4e9b-aaf0-22b045ad8571", "status": 7 } 失败响应示例 { "error_message": "The length of
DPO(Direct Preference Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码