内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习应用开发》学习笔记-09

    n阶张量/n维数组流,表示张量数据流动/计算过程。每一个张量有一个唯一类型,运算类型不匹配会报错,比如intfloat32运算就不行,这个是比较严格,可以先通过tf.cast()做类型转换常量定义时候是可以按需求做类型自动转换、reshape但是变量定义中,类型还是根据初值来定,而设定需求类型并没有生效:v2=tf

    作者: 黄生
    1745
    3
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 深度学习VGG网络

    VGG原理VGG16相比AlexNet一个改进是采用连续几个3x3卷积核代替AlexNet中较大卷积核(11x11,7x7,5x5)。对于给定感受野(与输出有关输入图片局部大小),采用堆积小卷积核是优于采用大卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂模式,而且代价还比

    作者: 我的老天鹅
    579
    16
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法是基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化

    作者: 小强鼓掌
    335
    1
  • 深度学习应用开发》学习笔记-12

    数据不是收集,是自己生成,好吧~一个简单例子学习没关系%matplotlib inline这个是为了让在jupyter在浏览器里能够显示图像。生成y=2x+1随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1

    作者: 黄生
    1024
    2
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 深度学习之噪声

    Dropout另一个重要方面是噪声是乘性。如果是固定规模加性噪声,那么加了噪声 ϵ 整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性乘性噪声

    作者: 小强鼓掌
    1045
    3
  • 《MXNet深度学习实战》—1.1.3 深度学习

    搭建起来一样,稍有不同是,在神经网络中层类型更多样,而且层与层之间联系复杂多变。深度学习深度主要就是来描述神经网络中层数量,目前神经网络可以达到成百上千层,整个网络参数量从万到亿不等,所以深度学习并不是非常深奥概念,其本质上就是神经网络。神经网络并不是最近几年才

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 图像增强滤波梯度

    函数返回其处理结果。前四个是必须参数:第一个参数是需要处理图像;第二个参数是图像深度,-1表示采用是与原图像相同深度。目标图像深度必须大于等于原图像深度;dxdy表示是求导阶数,0表示这个方向上没有求导,一般为0、1、2。其后是可选参数:dst不用解释了;ksi

    作者: Gere
    发表时间: 2022-08-07 11:26:18
    201
    0
  • 深度学习应用开发》学习笔记-02

    看看,是图灵相关三次浪潮就是三个时代,三盘棋。分别是1962年国际跳棋,1997年国际象棋,以及2016年围棋。从这个难易程度也可以看出,围棋是最强调系统性思维,所以 AI想要战胜人类也是最难。第一讲到这里就结束了,第二讲看了一点,其中关于人工智能机器学习概念,除了

    作者: 黄生
    1353
    3
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1146
    2
  • 深度学习应用开发》学习笔记-13

    先定义训练数据占位符,定义了2个,1个是特征值x,1个是标签值y然后定义模型函数,这个函数有3个参数,1个就是上面说x,还有2个是参数,分别是wb,就是2个参数斜率位移而上面的2个参数,要用tf.Variable来声明来创建变量,它是会变,在训练中学习,所以给它初值是多

    作者: 黄生
    457
    0
  • 深度学习应用开发》学习笔记-26

    这样是不好,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到知识,来做没做过题。 那比较好做法呢,是有一些数据,把这些数据分一分, 大部分做训练、一小部分做验证、再分一小部分做测试。 下面是模型应用,也就是预测代码 ```python

    作者: 黄生
    826
    3
  • 深度学习库 JAX

    JAX是一个似乎同时具备PytorchTensorflow优势深度学习框架。 JAX 是 Google Research 开发机器学习库,被称为“在 GPU/TPU上运行具有自动微分功能Numpy”,该库核心是类似 Numpy 向量矩阵运算。我个人认为,与NumpyPyTorch/T

    作者: QGS
    7165
    3
  • 深度学习应用开发》学习笔记-31

    先探索一下tf2里读取出数据。 每张图片数据化表示是28*28=784个数值,每个数值类型是numpy.uint8,uint8取值范围是0-255, 这个可能就是所谓256位图吧? 每张图片会有自己标签,就是表示这张图片是数字0-9中哪个。 另外用reshape重整了一下图像,比较有趣

    作者: 黄生
    520
    0
  • 深度学习数据收集

    深度学习需要大量数据集,但是现实是只有零星数据,大家有什么收集数据经验经历,还有什么收集数据好办法

    作者: 初学者7000
    745
    3
  • 深度学习之噪声鲁棒性

    算法是这种做法主要发展方向。另一种正则化模型噪声使用方式是将其加到权重。这项技术主要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重贝叶斯推断随机实现。贝叶斯学习过程将权重视为不确定,并且可以通过概率分布表示这种不确定

    作者: 小强鼓掌
    638
    1
  • 深度残差收缩网络:一种深度学习故障诊断算法

    png【翻译】如第一部分所述,作为一种潜在、能够从强噪声振动信号中学习判别性特征方法,本研究考虑了深度学习软阈值化集成。相对应地,本部分注重于开发深度残差网络两个改进变种,即通道间共享阈值深度残差收缩网络、通道间不同阈值深度残差收缩网络。对相关理论背景必要想法进行了详细介绍。A.

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0
  • Markdown 增强

    Markdown 中启用了更多语法与新功能。 # 一键启用 你可以设置 themeconfig.mdEnhance.enableAll 启用 md-enhance (opens new window) 插件所有功能。 module

    作者: 西魏陶渊明
    发表时间: 2022-09-24 19:42:18
    123
    0