检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Learning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法以及激活函数等方面做出了
重要成果就是词向量的学习。词向量可以看作是一种运用深度神经网络将词转换成隐含空间中的一个向量化的位置表示的方法。将词向量作为循环神经网络的输入,能有效利用合成式的向量语法对句子和短语进行解析。合成式的向量语法可以被认为是由循环神经网络实施的上下文无关的概率语法。另一方面,以长短期
所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;
我们到目前为止看到的线性模型和神经网络的最大区别,在于神经网络的非线性导致大多数我们感兴趣的损失函数都成为了非凸的。这意味着神经网络的训练通常使用的迭代的、基于梯度的优化,仅仅使得代价函数达到一个非常小的值;而不是像用于训练线性回归模型的线性方程求解器,或者用于训练逻辑回归或SVM的凸优化算
MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。还是举下棋的例子,当我们在某个局面(状态s)走了一步(动作a),这时对手的选择(导致下个状态s’)我们是不能确定的,但是他的选择只和s和a有关,而不用考虑更早之前的状态和动作,即s’是根据s和a随机生成的。
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
生活中的广泛应用,比如超市货架的商品摆放。课程还介绍了神经元模型的起源和全连接层的概念,以及ReLU等激活函数的作用。深度学习的核心是构建多层的神经网络,而卷积神经网络(CNN)的发展,尤其是AlexNet在2012年的突破,让我对深度学习的强大能力有了更深的认识。在学习过程中,
有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高
机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量
个相当高的代价值。通常,就总训练时间和最终代价值而言,最优初始学习率的效果会好于大约迭代 100 次左右后最佳的效果。因此,通常最好是检测最早的几轮迭代,选择一个比在效果上表现最佳的学习率更大的学习率,但又不能太大导致严重的震荡。
衡量的性能有所提升。” 经验 E,任务 T 和性能度量 P 的定义范围非常宽广,在本书中我们并不会去试图解释这些定义的具体意义。相反,我们会在接下来的章节中提供直观的解释和示例来介绍不同的任务、性能度量和经验,这些将被用来构建机器学习算法。
2 传统机器学习与深度学习的对比传统机器学习与深度学习在理论与应用上都存在差异,下面将分别从数据依赖、硬件支持、特征工程、问题解决方案、执行时间以及可解释性这六个方面对传统机器学习与深度学习的差别进行比较。数据依赖:深度学习和传统机器学习最重要的区别是前者的性能随着数据量的增加而增强
深度学习系统,学习的是输入和输出之间复杂的相关性,但是学习不到其间的因果关系。虽然有人工神经网络通过构建和加强联系,深度学习从数学上近似了人类神经元和突触的学习方式。训练数据被馈送到神经网络,神经网络会逐渐进行调整,直到以正确的方式做出响应为止。只要能够看到很多训练图像并具有足够
算法是基于特定数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。 树是图的一种特例(连通无环的图就是树)。 图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。具体方法有很多,两种最简单、最“暴力”的深度优先、广度优先搜索,还有 A*、IDA*
为了解决这个问题,学习算法会输出函数f : Rn→R。除了返回结果的形式不一样外,这类问题和分类问题是很像的。这类任务的一个示例是预测投保人的索赔金额(用于设置保险费),或者预测证券未来的价格。这类预测也用在算法交易中。 转录:这类任务中,机器学习系统观测一些相对非
个复杂的问题。针对以上无人机的能耗、空地通信和计算的制约关系,本文旨在论证利用深度增强学习[9]来解决以上难题的可能性。本文利用深度增强学习方法,通过资源优化、动态任务卸载以及缓存设置,提高无人机雾接入点的能效。同时探讨无人机在三维空间的航迹规划的方法,提高无人机的工作能效。最后
机器学习和深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习和深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更
磁盘增强型 磁盘增强型实例类型总览 磁盘增强型弹性云服务器自带高存储带宽和IOPS的本地盘,具有高存储IOPS以及读写带宽的优势。同时,本地盘的价格更加低廉,在海量数据存储场景下,具备更高的性价比。磁盘增强型弹性云服务器具备如下特点: 本地磁盘提供更高顺序读写性能和更低时延,提升文件读写性能。