检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。
若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
Step5 在ModelArts上创建Notebook并调试 将上传到SWR上的镜像注册到ModelArts的镜像管理中。 登录ModelArts管理控制台,在左侧导航栏中选择“镜像管理 ”,单击“注册镜像”,根据界面提示注册镜像。注册后的镜像可以用于创建Notebook。
当模型状态变更为“正常”时,表示模型创建成功。在此页面,您还可以创建新版本、快速部署服务、发布模型等操作。 后续操作 部署服务:在“模型列表”中,单击模型的操作列的“部署”,在对应版本所在行,单击“操作”列的部署按钮,可以将模型部署上线为创建模型时所选择的部署类型。
进入benchmark_tools目录下,切换一个conda环境,执行如下命令安装性能测试的关依赖。
在模型详情页面,切换到“事件”页签,查看事件信息。 父主题: 管理ModelArts模型
切换到“网络”页签,单击“创建”,弹出“创建网络”页面。 在“创建网络”弹窗中填写网络信息。 网络名称:创建网络时默认生成网络名称,也可自行修改。 网段类型:可选“预置”和“自定义”。
OBS obs:bucket:ListAllMyBuckets obs:bucket:ListBucket 镜像管理 ModelArts modelarts:image:register modelarts:image:listGroup 在镜像管理中注册和查看镜像。
如果使用了量化功能,则使用推理模型量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
bf16,配置以下参数 bf16: true fp16,配置以下参数 fp16: true 是否使用自定义数据集 是,参考准备数据(可选)后,填写自定义注册后数据集前缀名称及数据集绝对路径,参考表1dataset_dir行,如demo.json数据集前缀则为demo dataset
import torch_npu 调用后,前端会通过monkey-patch的方式注入到torch对象中,后端会注册NPU设备以及HCCL的参数面通信能力,这样就可以运行torch.npu相关接口。 图2 torch_npu导入 自动迁移完成GPU代码到昇腾的快速适配。
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
command="fake_command", # 执行的脚本命令 engine=wf.steps.JobEngine(image_url="fake_image_url"), # 自定义镜像的url,格式为:组织名/镜像名称:版本号,不需要携带相应的域名地址
同时,为方便能够将模型部署在不同的设备上,ModelArts还提供了模型转换能力,转换后的模型可应用于Ascend类型。
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配 dataset identity,alpaca_en_demo 【可选】注册在dataset_info.json文件数据集名称。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换
运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换
此处下拉框有4个选项,分别是: Code(写python代码),Markdown(写Markdown代码,通常用于注释),Raw(一个转换工具),-(不修改)。 查看代码历史版本。 git插件,图标显示灰色表示当前Region不支持。 当前的资源规格。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换