检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
求的文本,都将从此节点开始。 意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。 其他意图:包括普通对话、问答、或其他功能请求。该分支最终会引导文本到大模型节点进行处理。 提问器节点:
ACC ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。 ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1
大模型”节点分支,输出“大模型”节点的回答。 图2 试运行工作流-2 多场景测试:对多种不同场景下的prompt进行测试,确保在各种情境下系统能够有效响应: 不同语言对的翻译:如图3,针对不同的语言对(如中文到法语、俄语到西班牙语),评估翻译效果是否稳定。 图3 多场景测试-不同语言对
使用步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进入“文本对话”页签,选择服务与系统人设,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。 图1 使用预置服务进行文本对话 可以尝试修改参数并查看
Peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候
数据配置 训练数据 选择训练模型所需的数据集。 资源配置 训练单元 创建当前训练任务所需的训练单元数量。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。 基本信息 名称 训练任务名称。 描述 训练任务描述。 参数填写完成后,单击“立即创建”。
ACC ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1,
配置NFS网盘服务。 安装NFS服务 该步骤需要设备联网下载软件依赖包。 Ubuntu系统 在线安装: sudo apt install nfs-kernel-server Euler OS系统 在线安装: sudo yum install nfs-utils 若需离线安装,请联系盘古客服。
成任务。 意图识别节点配置说明 配置该节点来分析用户输入,识别其意图,以便后续处理。 提问器节点配置说明 配置一个提问器节点,用于向用户或系统提出问题,获取所需信息。 插件节点配置说明 将外部API等集成到工作流中,以扩展功能或调用外部接口。 判断节点配置说明 设置条件判断逻辑,根据不同情况分支到不同的流程路径。
AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。 Token认证 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。 cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候
资源配置 训练单元 选择训练模型所需的训练单元。 当前展示的完成本次训练所需要的最低训练单元要求。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。 基本信息 名称 训练任务名称。 描述 训练任务描述。 参数填写完成后,单击“立即创建”。
预置数据指令介绍 ModelArts Studio平台的数据合成功能为用户提供了预置指令,用户可以在“数据工程 > 数据管理 > 数据指令 > 系统预置”查看指令详情,如图2,单击“调测”可查看调测指南,如图3,帮助用户更好地使用该指令。 预置的数据指令清单详见表1。 图2 指令详情 图3
的食用鱼类,也是中国传统美食的原料之一。长江中的鱼类多样性体现了其丰富的生态系统,但近年来由于过度捕捞、生境破坏和污染等问题,长江中的许多鱼类种群数量急剧下降,特别是一些特有物种面临濒危。保护长江生态系统和其中的生物多样性已经成为当务之急。", "ppl":
ACC ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。 ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到1,
在特定任务上具有更高的准确性:微调后的模型在具体任务中表现更优。相较于预训练阶段的通用能力,微调能使模型更好地解决细分任务的需求。 在一个客户服务问答系统中,可以用特定领域(如电商、保险)的对话数据对预训练模型进行微调,使其更好地理解和回答与该领域相关的问题。 此外,针对微调训练任务,平台提供了两种微调方式: