检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用OBS中转,系统先将文件上传至OBS(对象桶或并行文件系统),然后从OBS下载到Notebook。下载完成后,ModelArts会将文件自动从OBS中删除。 例如,对于下面这种情况,可以通过“OBS中转”上传。 图5 通过OBS中转上传大文件 如果使用OBS中转需要提供一个OBS中转路径,可以通过以下三种方式提供:
在独立演进的。先确保应用输出符合预期后,再进入到MindSpore Lite模型转换的过程,否则迁移昇腾后还是会遇到同样的问题。 AOE的自动性能调优使用上完全没有效果怎么办? 在MindSpore Lite Convertor2.1版本之前可能出现的调优不生效的场景,建议直接使用MindSpore
在ModelArts中创建训练作业如:预训练,执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。
elArts的IAM权限控制详解。 ModelArts的权限不会凌驾于其他服务的权限之上,当您给用户进行ModelArts赋权时,系统不会自动对其他相关服务的相关权限进行赋权。这样做的好处是更加安全,不会出现预期外的“越权”,但缺点是,您必须同时给用户赋予不同服务的权限,才能确保
AI引擎框架 是否使用昇腾 (CANN版本) URL Tensorflow 1.15 是 (CANN 5.1) swr.{region-id}.{局点域名}/atelier/ tensorflow_1_15_ascend:tensorflow_1.15-cann_5.1.0-py_3.7-euler_2
在训练作业详情页面,选择Cloud Shell页签,登录训练容器(训练作业需处于运行中)。 安装py-spy工具。 # 通过utils.sh脚本自动配置python环境 source /home/ma-user/modelarts/run/utils.sh # 安装py-spy pip
905-xxx.zip代码包。 unzip AscendCloud-3rdLLM-6.3.905-*.zip 运行推理构建脚本build.sh文件,自动获取ascend_vllm_adapter文件夹中提供的vLLM相关算子代码。 cd llm_inference bash build.sh
代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 图7 正常训练过程 训练完成后权重保存在自动生成的目录,例如:t2v-f17-256-img4-videovae488-bf16-ckpt-xformers-bs4-lr2e-5-t
Python版本要求3.10,如果不满足的话,建议更新容器的conda环境的Python版本。 # 输入如下命令,待conda界面准备完成后输入y,等待自动下载安装 conda create --name py310 python=3.10 参数说明: --name:该参数为新环境名字,可以自定义一个,此处以py310举例。
除该实例,不会将流量路由到该实例,直到探测成功。 存活探针:用于检测应用实例内应用程序的健康状态。如果存活探针失败,即应用程序不健康,将会自动重启实例。 3种探针的配置参数均为: 检查方式:可以选择“HTTP请求检查”或者“执行命令检查”。 健康检查URL:“检查方式”选择“HT
代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
调用接口需要进行APP鉴权,在创建APP应用时自动生成“AppKey/AppSecret”,您可以在“在线服务授权管理”对话框中单击APP应用操作列的查看完整的AppSecret。单击应用名称前方的展开下拉列表,通过单击“添加AppCode”自动生成“AppCode”,您可以单击操作列的查看完整的AppCode。
如下图所示,每个盘后已有MOUNTPOINT,则代表已经执行过挂载操作,可跳过此章节,只用直接在/home目录下创建自己的个人开发目录即可。 图2 磁盘已挂载 执行自动化挂载脚本,将“/dev/nvme0n1”挂载在“/home”下供每个开发者创建自己的家目录,另两个合并挂载到“/docker”下供容器使
建数据处理”页面。 在创建数据处理页面,填写相关算法参数。 填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。
当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即计算节点个数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed.launch命令启动训练作业。 创建训练作业的关键参数如表2所示。
代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/tensorflow/code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/code”目录中,“code”为OBS存放代码路径的最后一级目录,可以根据实际修改。 启动命令:“python
指定的训练输出的数据存储位置中保存Checkpoint,且“预下载至本地目录”选择“下载”。选择预下载至本地目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置 PyTorch版reload ckpt PyTorch模型保存有两种方式。
Standard中创建训练作业时,设置训练“SFS Turbo”,在“文件系统”中选择SFS Turbo实例名称,并指定“存储位置”和“云上挂载路径”。系统会在训练作业启动前,自动将存储位置中的文件目录挂载到训练容器中指定路径。 图2 设置训练“SFS Turbo” 当前训练作业支持挂载多个弹性文件服务SFS Turbo,相同的文件系统只能挂载一次
# 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data),