检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取训练镜像 请确保在正确的Region下获取镜像。建议使用官方提供的镜像部署训练服务。镜像地址{image_url}请参见表1。 docker pull {image_url} Step5 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复
击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 图4 获取登录指令 此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。 登录指令末尾的域名为镜像仓库地址,请记录该地址,后面会使用到。
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。 该方式的训练流程与直接基于预置框架创建的训练作业相同,例如:
json文件中添加数据集描述。 关于数据集文件的格式及配置,请参考data/README_zh.md的内容。可以使用HuggingFace/ModelScope上的数据集或加载本地数据集。 上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/L
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 e
体检测等类型,可在自动学习的数据标注页面,单击“同步数据源”,将OBS中的数据重新同步至ModelArts中。 检查OBS的访问权限 如果OBS桶的访问权限设置无法满足训练要求时,将会出现训练失败。请排查如下几个OBS的权限设置。 当前账号具备OBS桶的读写权限(桶ACLs) 进
记住使用Dockerfile创建的新镜像名称, 后续使用 ${dockerfile_image_name} 进行表示。 Step2 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。
编辑llm_train/AscendSpeed中的Dockerfile文件第一行镜像地址,修改为本文档中的基础镜像地址。 FROM {image_url} (选填)编辑llm_train/AscendSpeed中的Dockerfile文件,修改git命令,填写自己的git账户信息。 git config
${dockerfile_image_name}:在step5中,使用Dockerfile创建的新镜像名称。 <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜
记住使用Dockerfile创建的新镜像名称, 后续使用 ${dockerfile_image_name} 进行表示。 Step2 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。
如何减小本地或ECS构建镜像的目的镜像的大小? 减小目的镜像大小的最直接的办法就是选择尽可能小且符合自己诉求的镜像,比如您需要制作一个PyTorch2.1+Cuda12.2的镜像,官方如果没有提供对应的PyTorch或者Cuda版本的镜像,优选一个没有PyTorch环境或没有安装Cuda的镜像,而不
scope参数定义了Token的作用域,示例中获取的Token仅能访问project下的资源。Modelarts使用区域的Endpoint(非全局域名)调用该接口,推荐您将scope设置为project。您还可以设置Token作用域为某个账号下所有资源或账号的某个project下的资源,详细定义请参见获取用户Token。
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 e
记住使用Dockerfile创建的新镜像名称, 后续使用 ${dockerfile_image_name} 进行表示。 Step2 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式 M
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info