检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
git-lfs-linux-arm64-v3.2.0.tar.gz cd git-lfs-3.2.0 sh install.sh 设置git配置去掉ssl校验。 git config --global http.sslVerify false git clone代码仓,以diffusers为例(注意替换用户个人开发目录)。
|── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 父主题: 制作自定义镜像用于推理
c_decode/EAGLE 文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
表5 Monitor 参数 参数类型 描述 failed_times Integer 模型实例调用失败次数,在线服务字段。 model_version String 模型版本,在线服务字段。 cpu_memory_total Integer 总内存,单位MB。 gpu_usage Float
对text_encoder等模型提升效果不大,性能主要瓶颈点在unet模型中,主要对unet模型做调优,整体的操作步骤如下: 转换前先清理缓存,避免转换时的影响。 # shell # 删除已有的aoe知识库,或者备份一份。 rm -rf /root/Ascend/latest/data/aoe
lm_tools/spec_decode文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
删除Workflow工作流 查询Workflow工作流 修改Workflow工作流 总览Workflow工作流 查询Workflow待办事项 在线服务鉴权 创建在线服务包 获取Execution列表 新建Workflow Execution 删除Workflow Execution 查询Workflow
模型({0})为自动学习模型,无法转换 自动学习模型没法进行转换。 500 ModelArts.3048 Model({0}) is being imported and cannot be converted. 模型({0})状态未正常,无法转换 等待模型状态变为正常后再进行转换。 500 ModelArts
标 训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU等资源使用统计信息和模型调用次数统计,具体参见查看服务详情章节。 父主题: ModelArts
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
Step3 上传代码包和权重文件上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
针对机器学习类模型,仅支持“application/json” data 在线服务-非必选 批量服务-必选 String 请求体以json schema描述。参数说明请参考官方指导。 表5 response结构说明 参数 是否必选 参数类型 描述 Content-type 在线服务-非必选 批量服务-必选 String
1009”:“AppKey or AppSecret is invalid”。 查询AppKey和AppSecret,使用APP认证访问在线服务,请参考访问在线服务(APP认证)。 父主题: 服务预测
模型转换工具 离线转换模型功能的工具MSLite Convertor,支持onnx、pth、tensorflowLite多种类型的模型转换,转换后的模型可直接运行在MindSpore运行时后端,用于昇腾推理。 精度性能检查工具 Benchmark精度检查工具,可以转换模型后执行推理前,使用其对MindSpore
P16。BertLarge使用FP32。 - 模型变更频率 模型变更场景如下: 数据增量,模型算子未变更。 数据增量,模型算子变化,例如: 网络结构变化。 AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 是否使用华为MDC产品
部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web Service,并且提供在线的测试UI与监控功能,部署成功的在线服务,将为用户提供一个可调用的API。 将模型部署为批量推理服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。
Server Standard自动学习、Workflow、Notebook、模型训练、模型部署 变更计费模式 不支持 支持变更为包年/包月计费模式。 变更计费模式 变更规格 不涉及 支持变更实例规格。 适用场景 适用于可预估资源使用周期的场景,价格比按需计费模式更优惠。对于长期使用者,推荐该方式。