检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于S
作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型训练。 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6
saved_models/pretrain_hf/目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配ModelLink
作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型训练。 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6
则推荐参照创建诊断任务创建cpu规格的notebook进行性能分析,节省NPU计算资源。完成分析后,可以查看生成的html文件来进行快速的调优,html文件详情请参考查看诊断报告。 下面以开发环境Notebook为例介绍一个典型的性能调优案例。 64卡训练任务,模型为GPT MOE,tensor
在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。 填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息
处理方法 如果在训练作业的工作目录下有core文件生成,可以在启动脚本最前面加上如下代码,来关闭core文件产生。 import os os.system("ulimit -c 0") 排查数据集大小,checkpoint保存文件大小,是否占满了磁盘空间。 必现的问题,使用本
线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。 查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格: 性能结果LLaMAFactory_train_perfo
-6.3.912-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
app名称。 app_remark 否 String app备注。 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 响应参数 状态码:200 表4 响应Body参数
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于S
saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
initialize NVML: Driver/library version mismatch 处理方法 执行命令:lsmod | grep nvidia,查看内核中是否残留旧版nvidia,显示如下: nvidia_uvm 634880 8 nvidia_drm
/llama2-13b/saved_models/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
aved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
aved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
aved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config
如果重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)