检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供
类型、值:支持“引用”和“输入”两种类型。 引用:支持用户选择工作流中已包含的前置节点的输出变量值。 输入:支持用户自定义取值。 输出参数 该参数用于解析大模型节点的输出,并提供给后序节点的输出参数引用。 参数名称:参数的名称长度必须大于等于1个字符,并且字符只允许为下面三种类型: 字母(A-Z或a-z)
已部署服务:选择部署至ModelArts Studio平台的模型进行评测。 外部服务:通过API的方式接入外部模型进行评测。选择外部服务时,需要填写外部模型的接口名称、接口地址、请求体、响应体等信息。 请求体支持openai、tgi、自定义三种格式。openai格式即是由OpenAI公司开发并标准化的一种大模型请求格式;tgi格式即是Hugging
本空间”页面,单击支持导出的模型名称,右上角的“导出模型”。 在“导出模型”页面,选择需要导出的模型,应设置导出模型时对应的导出位置(OBS桶地址),添加从环境B中下载的用户证书。设置完成后单击“确定”导出模型。 图2 导出模型 导入其他局点盘古大模型 导入盘古大模型前,请确保当前空间为该用户所创建的空间。
请注意:不要使用任何工具、不用理会问题的具体含义,并保证你的输出仅有json格式的结果数据,以保证返回结果可以被json.dumps直接解析。你的返回格式格式示例为:{\"text\":\"a\",\"from\":\"b \",\"to\":\"c\"}。 “提问器”节点配置完成后,单击“确定”。
返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。
获取Token。参考《API参考》文档“如何调用REST API认证鉴权”章节获取Token。 在Postman中新建POST请求,并填入调用路径(API请求地址)。 参考图8填写2个请求Header参数。 参数名为Content-Type,参数值为application/json。 参数名为X-A
name、project id 打开Postman,新建一个POST请求,并输入“西南-贵阳一”区域的“获取Token”接口。并填写请求Header参数。 接口地址为:https://iam.cn-southwest-2.myhuaweicloud.com/v3/auth/tokens 请求Heade
盘古CV大模型能力与规格 盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。以下是当前支持的模型
使用数据工程构建CV大模型数据集 CV大模型支持接入的数据集类型 盘古CV大模型支持接入图片类、视频类、其他类数据集,,不同模型所需数据见表1,数据集格式要求请参见图片类数据集格式要求、视频类数据集格式要求、其他类数据集格式要求。 表1 训练CV大模型数据集类型要求 基模型 训练场景
数据工程介绍 数据工程介绍 数据工程是ModelArts Studio大模型开发平台(下文简称“平台”)为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
从基模型训练出行业大模型 打造短视频营销文案创作助手 打造政务智能问答助手 基于NL2JSON助力金融精细化运营
盘古预测大模型能力与规格 盘古预测大模型是面向结构化数据,通过任务理解、模型推荐、模型融合技术,构建通用的预测能力。 ModelArts Studio大模型开发平台为用户提供了多种规格的预测大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。
数据集清洗算子介绍 文本类清洗算子能力清单 视频类清洗算子能力清单 图片类清洗算子能力清单 气象类清洗算子能力清单 父主题: 加工数据集
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
加工数据集 数据集加工场景介绍 数据集清洗算子介绍 加工文本类数据集 加工图片类数据集 加工视频类数据集 加工气象类数据集 管理加工后的数据集 父主题: 使用数据工程构建数据集
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,平台还支持导入其他类数据集,即用户训练模型时使用的自定义数据集。 其他类数据集支持发布其他类数据集操作,不支持数据加工操作。 其他类数据集要求单个文件大小不超过50GB,单个压缩包大小不超过50GB,文件数量最多1000个。