检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
创建Workflow训练作业节点 功能介绍 该节点通过对算法、输入、输出的定义,实现ModelArts作业管理的能力。主要用于数据处理、模型训练、模型评估等场景。主要应用场景如下: 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。 对于一些物体检测,
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
0条。数据集示例如下,单轮对话也可以复用此格式。您可以单击下载,获取示例数据集“simple_moss.jsonl”,该数据集可以用于文本生成类型的模型调优。 {"conversation_id": 1, "chat": {"turn_1": {"Human":"text","MOSS":"text"}
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
total_metric_values属性列表 参数 参数类型 说明 f1_score Float 训练作业模型总召回。仅限部分预置算法使用,会自动生成,仅供参考。 recall Float 训练作业模型总召回率。 precision Float 训练作业模型总精确率。 accuracy Float
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表12 storage定义数据结构说明
fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表15 storage定义数据结构说明
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
详情接口获取。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/notebooks 表1 路径参数 参数
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
自动停止参数,如表10 auto_stop字段数据结构说明所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 failed_reasons Object 创建、启动失败失败原因,如表16所示。 extend_params
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表20 storage定义数据结构说明
是 训练源代码的OBS路径。 --data-url String 是 训练数据的OBS路径。 --log-url String 是 存放训练生成日志的OBS路径。 --train-instance-count String 是 训练作业实例数,默认是1,表示单节点。 --boot-file
法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的数据文件本地路径和训练生成的模型输出本地路径。 “job_config”字段下的“parameters_customization”表示是否支持自定义超参,此处填true。