检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
户代码和ModelArts Standard后台交互的桥梁。 代码目录路径 您需要在OBS桶中指定代码目录,并将训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。训练作业创建完成后,ModelArts会将代码目录及其子目录下载至后台容器中。 例如:OBS路径“o
Lite Cluster资源开通 集群资源开通流程 开通集群资源过程中用户侧需要完成的任务流程如下图所示。 图1 用户侧任务流程 表1 Cluster资源开通流程 任务 说明 Step1 申请开通资源规格 当前部分规格为受限购买,需要提前联系客户经理申请开通资源规格,预计1~3个
配置训练作业基本信息 在创建训练作业页面填写训练作业基本信息。 表1 创建训练作业的基本信息 参数名称 说明 名称 必填,训练作业的名称。 系统会自动生成一个名称,可以根据业务需求重新命名,命名规则如下: 支持1~64位字符。 可以包含大小写字母、数字、中划线(-)或下划线(_)。 描述 训
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
steps=[model_registration] ) 上述案例中,系统会自动获取订阅模型中的自定义镜像,然后结合输入的OBS模型路径,注册生成一个新的模型,其中model_obs可以替换成JobStep的动态输出。 model_type支持的类型有:"TensorFlow"、"MXNet"、"Caffe"、
ModelArts权限管理基本概念 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照个人用
fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是步骤2中生成的实例; job_name:可选参数,训练任务名,便于区分和记忆。 本地分布式训练任务开始后,SDK会依次帮助用户完成以下流程: 将训练脚
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
参数说明 FILE_PATH String 是 Dockerfile文件所在的路径。 -t / --target String 否 表示构建生成的tar包保存在本地的路径,默认是当前文件夹目录。 -swr / --swr-path String 是 SWR镜像名称,遵循organi
集和测试集的大小分别为(50000,3,32,32)和(10000,3,32,32)。 考虑到下载cifar10数据集较慢,基于torch生成类似cifar10的随机数据集,训练集和测试集的大小分别为(5000,3,32,32)和(1000,3,32,32),标签仍为10类,指定custom_data
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
步骤四:启动容器 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd --privileged \ --device=/dev/davinci0 \ --device=/dev/davinci1
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
创建Workflow训练作业节点 功能介绍 该节点通过对算法、输入、输出的定义,实现ModelArts作业管理的能力。主要用于数据处理、模型训练、模型评估等场景。主要应用场景如下: 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。 对于一些物体检测,