检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、交并比等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于为给定的金相图像测定
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别自己所上传的商品
并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参
并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 模型评估 模型评估 “模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模
并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参
并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参
极致性能 依托ModelArts 基础平台,深度软硬件协同。 资源秒级调度,按需使用。 训练任务性能提升30%。 灵活开放 灵活的部署方式:支持在线部署、边缘部署、Hilens部署等多种部署方式。 自定义工作流编排:结合行业知识,编排AI应用开发流程。 开放的生态:用户间快速共享、交易。
确认”,即可删除当前数据集。 图4 应用资产 查看应用监控 在“应用详情”页的“应用监控”页签下,您可以查看当前版本应用的“基本信息”、“在线测试”、“历史版本”和“调用指南”,详情请见监控应用。 父主题: 自然语言处理套件
“专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。 “部署方式”:选择应用的部署方式,当前仅支持“在线部署”。 确认信息后,单击“确定”。 进入“应用开发”页面,您可以根据流程指引,基于您选择的工作流开发应用。 图4 开发应用 后续操作 根据所选的预置工作流开发应用。
ModelArts Pro使用对象存储服务(Object Storage Service,简称OBS)存储使用工作流过程中训练的数据,实现安全、高可靠和低成本的存储需求。OBS的更多信息请参见《对象存储服务控制台指南》。 与ModelArts的关系 ModelArts Pro底层依托一站式AI
的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训练并生成文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务识别身份证模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用通用单模板工作流开发应用的步骤如下所示:
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 训练分类器 评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 评估应用 部署服务
名为“IMG_20180919_114745.jpg”,那么标注文件的文件名应为“IMG_20180919_114745.xml”。 物体检测的标注文件需要满足PASCAL VOC格式,格式详细说明请参见表1。 零售商品工作流标注时需要勾勒出商品形状,必须使用多边形标注框。如果标
用的过程。通过上传模板图片、框选参照字段和识别区、上传训练集,自动训练并生成模板分类器和文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务自动分类模板并识别模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用多模板分类工作流开发应用的步骤如下所示:
depth:必选字段,图片的通道数。 segmented 是 表示是否用于分割。 mask_source 否 表示图像分割保存的mask路径。 object 是 表示物体检测信息,多个物体标注会有多个object体。 name:必选字段,标注内容的类别。 pose:必选字段,标注内容的拍摄角度。 truncat