检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、 特征过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 特征工程 特征工程常用于对原始数据进行特征挖掘的处理,形成的结果用于排序策略的训练。 排序策略 排序策略利
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。
功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。 获取推荐结果
res:scene:delete √ √ 新增训练作业 POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id}/job-instance res:job:add √ √ 新增多个训练作业 POST /v2.0
选择导入候选集类型,目前支持以下三种。 物品-分数候选集:物品-分数候选集可以用于在线服务的推荐候选集。 用户相似度候选集:用户相似度候选集可用于实时召回。 物品相似度候选集:物品相似度候选集可用于实时召回与在线服务的推荐候选集。 最大推荐结果数 最多生成多少个推荐结果。默认为100。 开启调度
参数类型 描述信息 训练集测试集划分方式 (divide_by_time_or_rate) 是 String 按时间或比例划分训练集测试集。 可选值为TIME或RATE。 训练数据起始时间 (training_data_start_time) 否 Long 训练数据起始时间。 di
一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。 父主题: 基础问题
一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。
自定义场景关闭后,为什么会自动启动? 在创建自定义场景时,如果设置了自动召回策略,且此召回策略关联了在线服务,就会自动运行场景实例。用户可关闭召回策略,或者在在线服务中删除依赖的这个策略。 父主题: 自定义场景
00E-08。 学习率(learning_rate) 是 Double 决定优化器在优化方向上前进步长的参数。取值范围(0,1],默认值为0.001。 在线学习(ftrl) 初始梯度累加和 (initial_accumulator_value) 是 Double 用来动态调整学习步长。取值范围(0
从右侧下拉框中选择RES系统中已有的数据源。当无可用数据源时,此下拉框为空。 描述 对于该场景的描述信息。 场景规格 - 选择离线计算、实时计算、排序模型训练规格和在线并发数。 个性化配置 匹配特征对 匹配用户和物品特征,以便于筛选出该用户相关联的物品进行推荐。 用户特征名:从下拉框中选择目标用户特征用于和物品特征进行匹配。
如何开始使用RES? 使用RES,从资源准备到在线服务完成推荐的全流程,如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算。 准备离线数据源
自定义场景 基于用户历史行为计算物品相似性,实时更新候选列表,提升用户体验,提高转化率支持多种召回、过滤、排序算子自由组合,训练形式上支持离线批处理、近线流处理、在线实时处理的三种数据处理方式,提供完备的一站式推荐平台,可快速设置运营规则进行AB测试。 功能优势: 全开放推荐流程,用户根据业务自定义推荐流程。
约束与限制 您能创建的在线服务的数量与配额有关系,具体请参见关于配额。 更详细的限制请参见具体API的说明。 父主题: 使用前必读
运行推荐作业 创建在线服务 - 创建在线服务用于部署上线服务、更新模型。配置实时计算的逻辑,包括设置在线流量、组装推荐结果和设置排序策略。根据策略做在线推荐结果融合、过滤、重排以及多流程之间的AB,并返回最终结果。 创建在线服务 获取推荐结果 - 您可以通过在线服务预测结果,也可以通过API接口获取最终的推荐结果。
RES操作流程 操作流程 本章节介绍使用RES,从资源准备到在线服务完成推荐的全流程。RES流程图如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算。
试集传入值。取值RAMDOM。 训练数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。
spec_id :参数类型Long,训练作业选择的资源规格ID。 run_path:参数类型String,训练结果保存根路径,训练完成后,会将模型和日志文件保存在该路径下。 training_data_path:参数类型String,训练数据的obs路径。 test_data_
是否必选 参数类型 说明 job_id 是 String 训练作业ID。 job_name 是 String 训练作业名称,只能由数字,字母,下划线,中划线组成,最大长度为20字符。 job_description 否 String 训练作业描述,最大长度为256字符。 project_id
查询规格 查询训练规格 父主题: API