检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在图片都标注完成后,单击右上角“开始训练”,在“训练设置”中,在“增量训练版本”中选择之前已完成的训练版本,在此版本基础上进行增量训练。其他参数请根据界面提示填写。 设置完成后,单击“确定”,即进行增量训练。系统将自动跳转至“模型训练”页面,待训练完成后,您可以在此页面中查看训练详情,如“训练精度”、“评估结果”、“训练参数”等。
思想是在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate的核心思想是
同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 评估结果说明 根据训练数据类的不同评估结果会包含不同的指标。 离散值评估结果 包含
查看训练作业详情 登录ModelArts管理控制台。 在左侧导航栏中,选择“模型训练 > 训练作业”,进入“训练作业”列表。 在作业列表,单击“导出”,可以将训练作业根据时间周期导出Excel表到本地。最多只支持导出前200行数据。 在“训练作业”列表中,单击作业名称,进入训练作业详情页。
训练作业训练失败报错:TypeError: unhashable type: ‘list’ 问题现象 使用订阅算法图像分类-EfficientNetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。
训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install
模型训练 自动学习训练作业失败 父主题: 自动学习
1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。
String 训练作业选择的引擎版本,请参考查询引擎规格列表。 user_image_url 否 String 自定义镜像训练作业的自定义镜像的SWR-URL。 user_command 否 String 自定义镜像训练作业的启动命令。 log_url 否 String 训练作业日志的
训练作业一直在等待中(排队)? 训练作业状态一直在等待中状态表示当前所选的资源池规格资源紧张,作业需要进行排队,请耐心等待。如想降低排队时间,根据您所选资源池的类型,有以下建议: 公共资源池: 公共资源池资源较少,高峰期如举办相关活动时会存在资源不足情况。有以下方法可以尝试: 如
模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自
会话对象,初始化方法请参考Session鉴权。 job_id 是 String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 无成功响应参数。 表2 调用训练接口失败响应参数 参数 类型 描述 error_msg
训练作业的启动文件如何获取训练作业中的参数? 训练作业参数有两种来源,包括后台自动生成的参数和用户手动输入的参数。具体获取方式如下: 创建训练作业时,“输入”支持配置训练的输入参数名称(一般设置为“data_url”),以及输入数据的存储位置,“输出”支持配置训练的输出参数名称(
删除训练作业 功能介绍 删除训练作业。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型
训练作业调测 使用SDK调测单机训练作业 使用SDK调测多机分布式训练作业 父主题: 训练作业
nizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoi
停止训练作业版本 功能介绍 停止训练作业。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI POST /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}/stop 参数说明如表1所示。
job_id 是 String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 get_job_info返回参数说明 参数 参数类型 描述 kind String 训练作业类型。默认使用job。