检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业运行失败排查指导 问题现象 训练作业的“状态”出现“运行失败”的现象。 原因分析及处理方法 查看训练作业的“日志”,出现报错“MoxFileNotExistsException(resp, 'file or directory or bucket not found.')”。
查看训练作业标签 通过给训练作业添加标签,可以标识云资源,便于快速搜索训练作业。 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单击“标签”页签查看标签信息。 支持添加、修改
模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务
er文件,具体请参见训练tokenizer文件说明。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd
size)流水线模型并行策略,具体详细参数配置如表2所示。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-use
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
nizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为8机64卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。
LoRA微调训练 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
txt Step5 训练Wav2Lip模型 准备预训练模型。下载需要使用的预训练模型。 人脸检测预训练模型,下载链接。 专家唇形同步鉴别器,下载链接 ,此链接是官方提供的预训练模型。训练Wav2Lip模型时需要使用专家唇形同步鉴别器,用户可以用自己的数据训练,也可以直接使用官方提供的预训练模型。
调试与训练 单机单卡 单机多卡 多机多卡 父主题: 专属资源池训练
如何在线弹性扩容,支持业务扩展 云数据库 GeminiDB云原生的计算存储分离架构,使得计算节点无状态,非常有利于业务扩展。 业务扩展面临计算节点、存储空间的两方面的扩容。 云数据库 GeminiDB共享存储,存储按需计费,一键扩容,不中断业务,最大支持96TB存储容量。 计算节点提供快速的双向扩展:
新建可训练技能 本章节介绍使用可训练技能模板新建技能。使用可训练技能模板新建技能,可自主上传数据训练模型,并快速创建技能,一键部署至端侧设备。 使用可训练技能模板新建技能,仅支持训练模型提高模型精度,暂不支持修改技能的逻辑代码。如果您希望自行修改技能的逻辑代码,可以选择开发基础技能,详情请见控制台开发技能。
LoRA微调训练 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
预训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
数里面。 “开发推理”用于生成推理代码至推理文件“learnware_predict.py”中。当学件模型打包发布成在线推理服务时,可以使用推理代码,完成快速在线推理验证。 单击“测试模型”左下方的“开发推理”。 等待推理代码生成完成后,可在左侧目录树中,看到生成的推理文件“learnware_predict
调用成功时无此字段。 job_id Long 训练作业的ID。 job_name String 训练作业的名称。 job_desc String 训练作业的描述信息。 version_count Long 训练作业的版本数。 versions JSON Array 训练作业的运行版本参数。该样例请参考响应样例。属性详情参见表4。
查看训练作业日志 训练日志定义 训练日志用于记录训练作业运行过程和异常信息,为快速定位作业运行中出现的问题提供详细信息。用户代码中的标准输出、标准错误信息会在训练日志中呈现。在ModelArts中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。
训练脚本说明 训练启动脚本说明和参数配置 训练数据集预处理说明 训练权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
源中步骤4。 训练模型 用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数 评估时必填,训练时可选,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据迭代计算的次数。 训练轮数 训练的轮数,每一轮训练结束都会对各方训练出的权重进行一次安全聚合。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的