已找到以下 126 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 获取推荐结果 - 推荐系统 RES

    获取推荐结果 在线服务创建完成,部署成功后,当服务状态会显示“运行中”,表示服务状态正常。您可以通过在线预测功能测试推荐结果进一步调整作业参数,也可以通过预测接口来调用API,获取推荐结果。 界面预测 登录RES管理控制台,在左侧菜单栏中选择“推荐业务>自定义场景”,进入自定义场景列表页面。

  • 全局特征信息文件 - 推荐系统 RES

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

  • 自定义场景简介 - 推荐系统 RES

    略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用trace_id

  • 自定义场景(热度推荐) - 推荐系统 RES

    召回策略成功,继续单击“下一步”,跳过可选步骤过滤策略和排序策略,进入“在线服务”页面,进行在线服务的配置。 在“在线服务”配置页面,进行在线流程配置,配置完成后单击“创建并完成”。 “在线流程”:自定义在线流程名称,此样例命名为“hot-flow”。 “推荐候选集”:选择步骤3

  • 组合作业 - 推荐系统 RES

    通用格式数据:从用户属性表、物品属性表和用户操作行为表中提取用户、物品特征和用户行为,并生成JSON数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。 完成该项配置后,单击“下一步”。 召回策略 您可以根据业务需要,选择合适的召回策略。召回策略用于配置离线

  • 创建自定义场景 - 推荐系统 RES

    “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。 创建完成后单击“确认”。保存后的召回策略会展示在下面的列表中。

  • 近线作业 - 推荐系统 RES

    数据的用户画像更新生成,热度越大排序越靠前。 时间排序:根据时间对候选集进行排序。时间排序需要指定特征名称和推荐天数。 特征名称:值为时间戳(10位)的特征的名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据的时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。

  • 效果评估 - 推荐系统 RES

    用户、物品特征和用户行为,并生成json数据,即内部通用格式。 数据时间范围 被统计数据的起始时间和终止时间。 统计间隔(天) 统计间隔,以天为单位,每隔多少天计算一次指标,大于0。 在线服务 选择已发布的在线服务进行推荐效果指标计算。 结果保存路径 效果评估结果在OBS的文件输出路径。

  • 绑定或解绑资源 - 推荐系统 RES

    、CloudTable开启IAM认证的集群和DIS通道供用户选择进行绑定或解绑。 背景信息 绑定资源之后,将该资源应用于RES的作业训练及在线作业获取推荐结果。 解绑资源完成资源释放,已经解绑的资源不再应用于RES的相关计算。 已开通计算引擎DLI、存储平台CloudTable、数据接入资源DIS相关服务。

  • 推荐结果多样性打散 - 推荐系统 RES

    配置“在线服务”参数 如果用户已经创建自定义场景,可以直接修改“在线服务”相关参数。 选择已经创建的自定义场景,单击名称,进入到自定义场景详情页。 单击已经创建的在线服务名称下面的“编辑”,进入编辑页面。 图1 修改在线服务参数 打开高级选项,进行打散功能的配置,选取相应的属性即可完成配置。 “高级类型”:选择“打散”。

  • 离线作业简介 - 推荐系统 RES

    集,用于在线服务计算得到推荐结果。RES提供了多种推荐离线作业功能,您可以直接使用得到满意的推荐候选集。 用户通过数据质量作业对离线数据进行质量检测,然后将检测合格的数据通过特征工程处理为可用于召回策略、过滤规则、排序策略、近线作业的数据。通过上述离线作业训练出可用于在线服务的推

  • 排序策略-离线排序模型 - 推荐系统 RES

    Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称

  • 配额说明 - 推荐系统 RES

    RES服务配额 资源 限制条件 建议 推荐引擎预测接口中最多请求结果数量 20 可提工单支持更高规格。 单份画像数据中最多支持的特征数量 30 单场景在线服务最多支持每秒请求的次数(TPS) 200 数据源个数 5 场景个数 10 单场景下推荐预测返回的结果集个数 20 如果当前资源配额限制

  • 工作空间简介 - 推荐系统 RES

    工作空间简介 RES工作空间帮您实现离线作业、近线作业和在线服务隔离的功能,达到不同角色用户信息隔离管理的目的。 如果您未开通企业项目管理服务的权限,您可以在RES创建自己独立的工作空间。 如果你开通了企业项目管理服务的权限,可以在创建工作空间的时候绑定企业项目,并在企业项目下添

  • 提交流式训练作业 - 推荐系统 RES

    flow_name 是 String 关联在线服务的其中一个在线流程的名称。流式训练作业所需的行为参数、模型文件路径、数据预处理信息等参数会从指定的在线服务的在线流程中获取。 online_training_config 是 JSON 请参见表12,平台参数。 bad_record_log 否

  • 过滤规则 - 推荐系统 RES

    用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。 策略参数设置完成后,单击“确定”。 您可以前往过滤规则列表,查看作业的基本情况。在作业列表中,刚创建的作

  • 准备离线数据源 - 推荐系统 RES

    认值为1。 否 publishTime Long 发布时间,采用UTC标准时间,单位以秒计。对物品有实时性要求的则必填。 否 expireTime Long 失效时间,采用UTC标准时间,单位以秒计。当前服务器的时间大于该时间时,此物品将不会被推荐。如不设置,代表永不失效。 否 author

  • 创建智能场景 - 推荐系统 RES

    离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。

  • 发布或终止自定义场景 - 推荐系统 RES

    列表页面和自定义场景详情页面进行操作。 发布或终止自定义场景默认对该场景下的所有作业执行发布或终止操作,包括召回策略、过滤规则、排序策略和在线服务等作业。 前提条件 已存在创建成功的自定义场景。 发布自定义场景 登录RES管理控制台,在左侧导航栏中选择“推荐业务” > “自定义场景”,进入自定义场景列表页面。

  • 编辑或删除工作空间 - 推荐系统 RES

    编辑或删除工作空间 工作空间页面主要列举了当前已创建的工作空间项目信息,包括工作空间“名称”、“状态”、“绑定的企业项目”、“创建人”、“创建时间”、“更新时间”和“操作”。 前提条件 已存在创建成功的工作空间。 编辑工作空间 您可以对创建的工作空间进行修改操作,具体操作如下: 登录RES管