检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
产生告警的集群名称。 服务名 产生告警的服务名称。 角色名 产生告警的角色名称。 主机名 产生告警的主机名。 对系统的影响 系统无法提供数据加载,查询,提取服务。 可能原因 Hive服务不可用可能与ZooKeeper、HDFS、Yarn和DBService等基础服务有关,也可能由Hive自身的进程故障引起。
对于可以压缩的数据,配置压缩算法可以有效减少磁盘的IO,从而达到提高性能的目的。 说明: 并非所有数据都可以进行有效压缩。例如一张图片的数据,因为图片一般已经是压缩后的数据,所以压缩效果有限。常用的压缩算法是SNAPPY,因为它有较好的Encoding/Decoding速度和可以接受的压缩率。
Kafka作为一个消息发布-订阅系统,为整个大数据平台多个子系统之间数据的传递提供了高速数据流转方式。 Kafka可以实时接受来自外部的消息,并提供给在线以及离线业务进行处理。 Kafka与其他组件的具体的关系如下图所示: 图1 与其他组件关系 父主题: Kafka
Spark提供了类似SQL的Spark SQL语言,用于对结构化数据进行操作。使用Spark SQL,可以访问不同的数据库,用户可以从这些数据库中提取数据,处理并加载到不同的数据存储中。 本实践演示如何使用MRS Spark SQL访问GaussDB(DWS)数据。 本章节仅适用于MRS
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
以HDFS文本文件为输入数据 log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
对于可以压缩的数据,配置压缩算法可以有效减少磁盘的IO,从而达到提高性能的目的。 说明: 并非所有数据都可以进行有效压缩。例如一张图片的数据,因为图片一般已经是压缩后的数据,所以压缩效果有限。常用的压缩算法是SNAPPY,因为它有较好的Encoding/Decoding速度和可以接受的压缩率。
查看MRS作业详情和日志 用户通过管理控制台可在线查看当前MRS集群内所有作业的状态详情,以及作业的详细配置信息和运行日志信息。 由于Spark SQL和Distcp作业在后台无日志,因此运行中的Spark SQL和Distcp作业不能在线查看运行日志信息。 查看作业状态 登录MRS管理控制台。
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
小文件优化 操作场景 Spark SQL表中,经常会存在很多小文件(大小远小于HDFS的块大小),每个小文件默认对应Spark中的一个Partition,即一个Task。在有很多小文件时,Spark会启动很多Task,此时当SQL逻辑中存在Shuffle操作时,会大大增加hash分桶数,严重影响系统性能。
产生告警的服务名称。 RoleName 产生告警的角色名称。 HostName 产生告警的主机名。 对系统的影响 系统无法提供数据加载,查询,提取服务。 可能原因 Hue服务所依赖内部服务KrbServer故障。 Hue服务所依赖内部服务DBService故障。 与DBService连接的网络异常。
务,开启物化视图推荐能力后,系统能自动学习并推荐对业务最有价值的物化视图SQL,使HetuEngine具备自动预计算加速能力,在相关场景下在线查询效率获得倍数提升,同时有效降低系统负载压力。 前提条件 集群运行正常并至少安装一个QAS实例。 已创建用于访问HetuEngine W
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HiveQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON,CSV,TEXTFILE,RCFIL
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
Hive基本原理 Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O