检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署为在线服务 模型训练完成后,即模型处于“已完成”状态时,可以启动模型的部署操作。 基于盘古大模型打造的专业大模型包括BI专业大模型与单场景大模型支持模型推理,但不支持模型训练。 部署为在线服务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“部署”。
什么情况下不建议微调? 更多 技术专题 技术、观点、课程专题呈现 云图说 通过云图说,带您了解华为云 OCR基础课程 介绍文字识别服务的产品、技术指导和使用指南 OCR系列介绍 文字识别服务在计算机视觉的重要性、基本技术和最新进展 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦!
应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。
型能力的入口。用户可以通过在“能力调测”页面选择调用基模型或训练后的模型。 训练后的模型需要“在线部署”且状态为“运行中”时,才可以使用本章节提供的方法进行调测,具体步骤请参见部署为在线服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定。当用户向AI助手提
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私
训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训练会混合不同类型的数据。例如,
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
识别并过滤文本中包含的涉黄、涉暴、涉政等敏感词。 通用清洗 正则替换 基于给定的正则表达式,进行文本替换。 正则过滤 基于给定的正则表达式,进行文本过滤。 数据读取 单栏文字版PDF文档读取 解析PDF文档。数据集文件类型为PDF时显示。 word文本读取 解析WORD文档,支持doc和docx格式。 html格式读取
调用盘古大模型API 用户可以通过API调用盘古大模型服务的基模型以及用户训练后的模型。训练后的模型只有在使用“在线部署”功能时,才可以使用本章节提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作。
为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ -
使用API调用模型 用户可以通过API调用盘古大模型服务提供的基模型以及用户训练后的模型。训练后的模型需使用“在线部署”,才可以使用本章节提供的方法进行调用。本章节分别介绍使用Postman调用API和多语言(Java/Python/Go)调用API的方法,仅供测试使用。 前提条件
要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?”
述清楚。如果Agent实际执行效果不符合预期,可以调整。 input_desc。工具的入参描述 ,为重要参数,该描述直接影响LLM对入参的提取,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 output_desc。工具的出参描述,当前对Agent的表现无重要影响。
请求消息体 请求消息体通常以结构化格式发出,与请求消息头中Content-Type对应,传递除请求消息头之外的内容。若请求消息体中参数支持中文,则中文字符必须为UTF-8编码。 每个接口的请求消息体内容不同,也并不是每个接口都需要有请求消息体(或者说消息体为空),GET、DELETE操作类
量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 inputDesc。工具的入参描述,为重要参数。该描述直接影响LLM对入参的提取,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 outputDesc。工具的出参描述,当前对Agent的表现无重要影响。
部署盘古大模型 部署为在线服务 部署为边缘服务
或示例等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。提示词主要包含以下要素: 指令:想要模型执行的特定任务或指令。如总结、提取、生成等。 上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。 输入数据:用户输入的内容或问题。 输出指示:指定输出的类型或格式。
来源一:互联网开源数据集,如政府网站网页、政府在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于具体场景和项目需求,收集相关的文本数据。比如通过与当地政府的政数局进行合作,获取政府部门提供的内部脱敏数据等。相关的数据格式包括但不限于:在线网页、离线word文档、离线txt文件