检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI建模与训练平台 AI建模与训练平台 领域方向:人工智能 工作地点: 杭州 AI建模与训练平台 人工智能 杭州 项目简介 随着人工智能技术的发展,越来越多的行业开始使用人工智能做智能化转型。本项目旨在开发一套端到端的人工智能模型开发平台。 岗位职责 从事AI工程化和AI平台的开发。
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。De
训练管理 训练作业 资源和引擎规格接口
的非监督学习就是从底层开始,一层一层地往顶层训练。采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,这也是和传统神经网络区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一个使
力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS
I开发平台,获得图像识别训练和推理性能双料冠军,将模型训练时间大幅缩减的同时实现了超强推理性能,体现了其在全球深度学习平台技术的领先性。 在训练性能方面,ResNet50_on_ImageNet上的测试结果显示,当采用128块V100时,华为云ModelArts上模型训练时间仅需
的非监督学习就是从底层开始,一层一层地往顶层训练。采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,这也是和传统神经网络区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一个使
训练管理(旧版) 训练作业 训练作业参数配置 可视化作业 资源和引擎规格接口 作业状态参考 父主题: 历史API
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: Standard自动学习
安全,这超出了本章的范围。然而,它们在正则化的背景下很有意思,因为我们可以通过对抗训练(adversarial training)减少原有独立同分布的测试集的错误率——在对抗扰动的训练集样本上训练网络 (Szegedy et al., 2014b; Goodfellow et al
安全,这超出了本章的范围。然而,它们在正则化的背景下很有意思,因为我们可以通过对抗训练(adversarial training)减少原有独立同分布的测试集的错误率——在对抗扰动的训练集样本上训练网络 (Szegedy et al., 2014b; Goodfellow et al
昇腾设备上并跑通训练过程。该实验的主要任务有: 1、在本地跑通“基于Tensorflow1.15编写的LeNet网络的minist手写数字识别”的程序; 2、模型迁移,将原代码迁移成能在昇腾AI处理器上进行训练的代码; 3、将迁移后的代码跑在ModelArts平台上。 一、本地
Object 会话对象,初始化方法请参考Session鉴权。 job_id 是 String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 get_job_log请求参数说明 参数 是否必选 参数类型
创建和训练模型 命令如下: 1 2 3 4 5 6 7 8 9 10 11 # create model model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)),
训练作业 创建训练作业 查询训练作业列表 查询训练作业版本详情 删除训练作业版本 查询训练作业版本列表 创建训练作业版本 停止训练作业版本 更新训练作业描述 删除训练作业 获取训练作业日志的文件名 查询预置算法 查询训练作业日志 父主题: 训练管理(旧版)
是 String 训练作业类型。默认使用job,表示训练作业。 visualization_job:表示可视化作业 metadata 是 JobMetadata object 训练作业元信息。 algorithm 否 JobAlgorithm object 训练作业算法。目前支持三种形式:
train_labels), (test_images, test_labels) = fashion_mnist.load_data() 对训练数据做预处理,并查看训练集中最开始的25个图片。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 class_names
用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 project_id 是 String
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 返回参数说明 参数 参数类型 描述 kind String 训练作业类型。默认使用job。 枚举值: job:训练作业 hetero_job:异构作业
用户还可以创建训练作业的数量。 jobs jobs结构数组 训练作业的属性列表,具体请参见表4。 quotas Integer 训练作业的运行数量上限。 表4 jobs属性列表 参数 参数类型 说明 job_id Long 训练作业的ID。 job_name String 训练作业的名称。
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍