检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
A系列裸金属服务器RoCE带宽不足如何解决? GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 训练速度突然下降以及执行nvidia-smi卡顿如何解决? GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA
kflow。 删除后的Workflow无法恢复,请谨慎操作。 删除Workflow后,对应的训练作业和在线服务不会随之被删除,需要分别在“模型训练>训练作业”和“模型部署>在线服务”页面中手动删除任务。 父主题: 管理Workflow
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.2
如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.2
如果使用Server资源,请参考Lite Server资源开通,购买Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.2
如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.2
存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity full \ --recompute-method block
存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity full \ --recompute-method block
存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity full \ --recompute-method block
存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity full \ --recompute-method block
存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity full \ --recompute-method block
DeletePoolV2 更新资源池 PoolV2 UpdatePoolV2 创建网络 NetworksV1 CreateNetworksV1 删除网络 NetworksV1 DeleteNetworksV1 更新网络 NetworksV1 UpdateNetworksV1 父主题: 使用CTS审计ModelArts服务
导入模型 如何将Keras的.h5格式模型导入到ModelArts中 导入模型时,模型配置文件中的安装包依赖参数如何编写? 使用自定义镜像创建在线服务,如何修改默认端口 ModelArts平台是否支持多模型导入 导入AI应用对于镜像大小的限制 父主题: 模型管理
如果使用Server资源,请参考Lite Server资源开通,购买Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.2
--configFile=./configs/text_encoder.ini 如果网络模型有多个输入:档位的dim值与网络模型输入参数中的-1标识的参数依次对应,网络模型输入参数中有几个-1,则每档必须设置几个维度。 以unet模型为例,该网络模型有三个输入,分别为“sample(1,4,64,64)”
<img>img_path</img>\n{your prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。如果是本地图片,容器需要有权限读取图片。网络图片服务端会自动下载。 messages的样例如下: # body参考 # 图片存放本地示例 { "messages":
使用Notebook进行AI开发调试 Notebook使用场景 创建Notebook实例 通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook
保存整个Model(不推荐) torch.save(model, path) 可根据step步数、时间等周期性保存模型的训练过程的产物。 将模型训练过程中的网络权重、优化器权重、以及epoch进行保存,便于中断后继续训练恢复。 checkpoint = { "net":
正常”。 单击新建的模型名称左侧的小三角形,展开模型的版本列表。在操作列单击“部署 > 在线服务”,跳转至在线服务的部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值。 “资源池”:选择“公共资源池”。 “模型来源”和“选择模型及版本”:会自动选择模型和版本号。