检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何访问ModelArts Pro 云服务平台提供了提供了管理控制台的管理方式。 ModelArts Pro提供了简洁易用的管理控制台,包括自然语言处理、视觉AI、文字识别、语音识别等应用开发功能,您可以在管理控制台端到端完成您的AI应用开发。 使用ModelArts Pro管理控制台,需要先注册华为云。
“删除”:单击“删除”,弹出“删除数据集”对话框,单击“确认”,即可删除当前数据集。 查看应用监控 如果应用的部署方式是在线部署,您可以在“应用详情”页的“应用监控”页签下查看当前版本应用的“基本信息”、“在线测试”、“历史版本”和“调用指南”,详情请见监控应用。 父主题: 视觉套件
其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。 “部署方式”:选择应用的部署方式。 “在线服务”:将服务部署为在线服务,进而在线使用服务,也可以直接调用对应的API。 “HiLens部署”:将服务部署至HiLens设备。当前部署支持的HiLens设备为Atlas
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。
当新建应用时,服务部署方式选择“在线部署”时,支持选择计算规格。 计算节点个数 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 服务自动停止 当新建应用时,服务部署方式选择“在线部署”时
当新建应用时,服务部署方式选择“在线部署”时,支持选择计算规格。 计算节点个数 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 服务自动停止 当新建应用时,服务部署方式选择“在线部署”时
当新建应用时,服务部署方式选择“在线部署”时,支持选择计算规格。 计算节点个数 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 服务自动停止 当新建应用时,服务部署方式选择“在线部署”时
查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
由于该工作流所需数据集需标注10%数据量用于测试,其余90%无需标注。针对已上传的数据集,您可以手动添加或修改标签。 单击数据集操作列的“标注测试图片”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 导入数据集 在“数据选择”页面,单击“导入数据集”。 弹出“导入数据集”对话框。
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别图像的类别,也可以直接调用对应的API和SDK识别。
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“损失变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 服务自动停止 设置服务自动停止的时间,在线服务运行状态在所选的时间点后自动停止,同时在线服务也停止计费。 部署成功后,页面显示“服务部署成功”,您可以单击“查看应用监控”,进入“应用监控”页面,监控应用的相关信息,详情请见监控应用。
设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 服务自动停止 设置服务自动停止的时间,在线服务运行状态在所选的时间点后自动停止,同时在线服务也停止计费。 部署成功后,页面显示“服务部署成功”,您可以单击“查看应用监控”,进入“应用监控”页面,监控应用的相关信息,详情请见监控应用。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别云状的类型,也可以直接调用对应的API和SDK识别。
设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 服务自动停止 设置服务自动停止的时间,在线服务运行状态在所选的时间点后自动停止,同时在线服务也停止计费。 部署成功后,页面显示“服务部署成功”。您可以单击“查看应用监控”,进入应用监控页面查看监控信息,详情请见监控应用。