检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
x_stable_diffusion_img2img_mslite.py是从Stable Diffusion源码中的pipeline复制并修改的,这些文件在后续的章节中会使用并进一步介绍。 图1 代码目录 将“modelarts-ascend/examples/AIGC/stab
案例中从Gallery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。 名称:默认自动生成,也可自定义修改。 描述:数据集信息描述。 单击“确定”,跳转至“我的数据 > 我的下载”页签,等待下载完成(下载完成大概5分钟左右,请您耐心等待)。 图2
_type字段未填写,则表示默认使用"TensorFlow"。 如果您构建的工作流对注册的模型类型没有修改的需求,则按照上述示例使用即可。 如果您构建的工作流需要多次运行可以修改模型类型,则可使用占位符参数的方式进行编写: model_type = wf.Placeholder(
成验收,此时不允许发起新的验收任务,只能继续完成当前验收任务。 3:通过。团队标注任务已完成。 4:驳回。manager再次启动任务,重新修改标注和审核工作。 5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
3.5,1.4,0.2 4.9,3.0,1.4,0.2 4.7,3.2,1.3,0.2 根据定义好的映射关系,最终推理请求样例如下所示,与在线服务使用的格式类似: { "data": { "req_data": [{ "input_1": 5.1, "input_2":
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
ts参数配合使用。 enterprise_project_id String 企业项目ID。 update_time Integer 最后修改时间,UTC。 create_time Integer 创建时间,UTC。 enterprise_project_name String 企业项目名称。
默认用户权限可选择优先级1和2,配置了“设置作业为高优先级权限”的用户可选择优先级1~3。 如果训练作业长时间处于“等待中”的状态,则可以通过修改作业优先级来减少排队时长,请参见修改训练作业优先级。 SFS Turbo 当ModelArts和SFS Turbo间网络直通时,训练作业支持挂载多个SFS
str四种类型 ] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url"
到需要替换的具体源码,然后根据API instruction跳转后的参考文档修改源代码,从而使能亲和API提升训练性能。注意这里提示的亲和API并非都能提升训练性能,需要用户替换后实测,由于有一定代码修改和测试成本,因此优先级可以视作最低。 图17 亲和API分析 SyncBatchNorm
头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 如果您的原始表格中没有表头,需关闭“导入是否包含表头”开关,从OBS选择数据后,Schema信息的列名默认为表格中的第一行数据,请更改Schema信息中的“列名”为attr_1、attr_2、……
import cv2 cv2.imread('obs://bucket_name/xxx.jpg', cv2.IMREAD_COLOR) 修改为如下代码: 1 2 3 4 import cv2 import numpy as np import moxing as mox img
团队标注成员任务状态。可选值如下: 6:已创建。 0:启动中。 1:运行中。 2:验收中。 3:通过,即团队标注任务已完成。 4:驳回,即需要重新修改标注和审核工作。 update_time Long 团队标注成员任务更新时间。 worker_id String 团队标注成员ID。 workforce_task_name
X.git cd YOLOX git checkout 4f8f1d79c8b8e530495b5f183280bab99869e845 修改“requirements.txt”中的onnx版本,改为“onnx>=1.12.0”。 将“yolox/data/datasets/coco
ReadOnlyAccess权限。 在ModelArts管理控制台,单击“权限管理 ”,在对应委托的操作列,单击“查看权限 > 去IAM修改委托权限”。 在新页面中,单击“授权记录 > 授权”,搜索“IAM ReadOnlyAccess”,勾选后单击“下一步”并单击“确认”。 验证权限是否配置成功。