检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
附录:微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
ModelArts数据管理支持哪些格式? 不同类型的数据集支持不同的功能。 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本 自动分组 数据特征 文件型 图像分类 支持 支持 支持 支持 支持 支持 支持 支持 物体检测 支持 支持 支持 支持
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
动态挂载OBS并行文件系统成功,但是在Notebook的JupyterLab中无法看到本地挂载点 问题现象 在Notebook中动态挂载OBS并行文件系统,本地挂载目录为/data/demo-yf/,实际在JupyterLab左侧导航看不到此目录。 图1 本地挂载目录 图2 Notebook
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个
报名实践活动(实践) 在AI Gallery中,可以报名参加正在进行中的实践活动。 查找实践活动 进入AI Gallery首页,单击“实践”,在下拉框中单击“实践 >”,进入实践首页。 在实践页面,有“进行中”、“即将开始”和“已结束”三种状态的实践活动筛选方式。 图1 查找实践活动
提交训练作业时,出现xxx isn't existed in train_version错误 问题现象 提交训练作业时,出现xxx isn't existed in train_version错误,如下所示。 图1 xxx isn't existed in train_version
查找Workflow工作流 查找Workflow 在Workflow列表页,您可以通过搜索框,根据工作流的属性类型快速搜索过滤到相应的工作流,可节省您的时间。 登录ModelArts管理控制台,在左侧导航栏选择“开发空间>Workflow”,进入Workflow总览页面。 在工作流列表上方的搜索框中
如何查看ModelArts消费详情? 在“费用中心”,您可以根据需求按照账期、产品类型等查询ModelArts的消费详情。本章节以查询“账单详情”为例指导您查看计费情况,如需了解更多的账单情况,请参见查看费用账单。 查询方法: 单击右上方的“费用中心 > 费用账单”进入费用中心详情页面
如何查看ModelArts消费详情? 在“费用中心”,您可以根据需求按照账期、产品类型等查询ModelArts的消费详情。本章节以查询“账单详情”为例指导您查看计费情况,如需了解更多的账单情况,请参见查看费用账单。 查询方法: 单击右上方的“费用中心 > 费用账单”进入费用中心详情页面
从AI Gallery下载到桶里的数据集,再在ModelArts里创建数据集,显示样本数为0 首先需要确认从AI Gallery下载的数据格式,比如压缩包、excel文件等会被忽略,支持格式详情: 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本
使用PyCharm上传数据至Notebook 不大于500MB数据量,直接复制至本地IDE中即可。 大于500MB数据量,请先上传到OBS中,再从OBS下载到云上Notebook。 图1 数据通过OBS中转上传到Notebook 上传数据至OBS,具体操作请参见上传文件至OBS桶。
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度
训练文本分类模型 完成数据标注后,可进行模型的训练。模型训练的目的是得到满足需求的文本分类模型。由于用于训练的文本,至少有2种以上的分类(即2种以上的标签),每种分类的文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft
管理Lite Cluster节点池 为帮助您更好地管理Kubernetes集群内的节点,ModelArts支持通过节点池来管理节点。一个节点池包含一个节点或多个节点,能通过节点池批量配置一组节点。 在资源池详情页,单击“节点池管理”页签,您可以创建、更新和删除节点池。 图1 节点池管理
为什么资源充足还是在排队? 如果是公共资源池,一般是由于其他用户占用资源导致,请耐心等待或根据训练作业一直在等待中(排队)?方法降低排队时间。 如果是专属资源池,建议您进行以下排查: 排查专属资源池中是否存在其他作业(包括推理作业、训练作业、开发环境作业等)。 可通过总览页面,快速判断是否有其他模块的作业或实例在运行中