检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多轮对话:基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 图1 服务管理 图2 申请开通服务 您可按照需要选择是否开启内容审核。 开启内容审核后,可以有效拦截大模型输入输出的有害信息,保障模型调用安全,推荐进行开启。
通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 知识库管理”,单击页面右上角“创建知识库”。
基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如营销文案生成、阅读理解、智能对话和代码生成等应用功能。 父主题: 大模型概念类问题
数据配比功能介绍 用户针对业务场景,可以通过数据配比功能,自由组合多个数据集,并控制数据占比。 数据集来源:用户自己创建并且已经发布的数据集。 数据集组合:选择多个数据集,并且可以指定数据之间的配比和条数,最大支持20个。 配比的作用:支持用户灵活调整数据集的比例。
选择基模型/基础功能模型 query改写模块:盘古-NLP-N1-基础功能模型 说明:该模块用于对多轮对话中的省略和指代问题进行补全,对多轮对话中的query进行改写。当前query改写模块来实现训练和预测需要使用特殊的Prompt,需要注意保持一致。
历史对话保留轮数 选择“多轮对话”功能时具备此参数,表示系统能够记忆的历史对话数。 父主题: 调用盘古大模型
以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ - √ √ 盘古-NLP-N2-基础功能模型-4K - √ √ √ √ 盘古-NLP-N2-基础功能模型-32K - √ √ -
提示词工程使用流程 盘古大模型套件平台可以辅助用户进行提示词设计、调优、比较和对提示词通用性进行自动评估等功能,并对调优得到的提示词进行保存和管理。 表1 功能说明 功能 说明 提示用例管理 提示用例集用于维护多组提示词变量的信息,可以用于提示词的调优、比较和评估。
通过数据工程、模型开发和应用开发等功能套件,帮助开发者充分发挥盘古大模型的强大功能。企业可根据自身需求选择合适的大模型相关服务和产品,轻松构建自己的模型。 数据工程套件 数据是大模型训练的基础,为大模型提供了必要的知识和信息。
用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 预览提示词效果 单击“查看效果”按钮,输出模型回复结果,用户可以根据预览效果调整提示词的文本和变量。 父主题: 撰写提示词
单击“多轮对话”页签,选择使用N2系列模型,在页面右侧“参数设置”中可以开启搜索增强功能。 图1 体验搜索增强能力
图3 大模型内容审核 购买内容审核套餐包时,如果使用“文本补全”和“多轮对话”功能,需要选择“文本内容审核”套餐。 父主题: 准备工作
图1 内容审核授权 购买内容审核套餐包,使用“文本补全”、“多轮对话”功能时需要购买“文本内容审核”套餐包。 图2 购买内容审核套餐包 父主题: 调用盘古大模型
表1 token比 模型规格 token比(token/英文单词) token比(token/汉字) N1系列模型 0.75 1.5 N2系列模型(不包含盘古-NLP-N2-基础功能模型-4K-Preview) 0.88 1.24 盘古-NLP-N2-基础功能模型-4K-Preview
表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions) Java、Python、Go、.NET、NodeJs 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。
配置Memory(Python SDK) Memory(记忆)模块结合外部存储为LLM应用提供长短期记忆功能,用于支持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。 租户:负责云服务内部的安全,安全地使用云。
人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来获取数据。 父主题: 典型训练问题和优化策略
选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于人工泛化的真实业务场景数据。 来源三:基于简单规则槽位泛化的真实业务场景数据。