检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
NPU服务器上配置Lite Server资源软件环境 注意事项 本文旨在指导如何在Snt9b裸金属服务器上,进行磁盘合并挂载、安装docker等环境配置。在配置前请注意如下事项: 首次装机时需要配置存储、固件、驱动、网络访问等基础内容,这部分配置尽量稳定减少变化。 裸机上的开发形
bird"}' 执行成功显示: 图2 执行成功显示 在浏览器输入http://{宿主机ip}:8183,可以访问前端页面,通过输入文字生成图片。 图3 输入文字生成图片 注意需要勾选Enable Flash Attention按钮。 图4 Enable Flash Attention优化按钮 父主题:
placeholder_type=wf.PlaceholderType.INT, default=64, description="每步训练的图片数量(单卡)")), wf.AlgorithmParameters(name="eval_batch_size",
Server资源软件环境 场景描述 本文旨在指导如何在GPU裸金属服务器上,安装NVIDIA、CUDA驱动等环境配置。由于不同GPU预置镜像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。下面为常见的软件安装步骤,您可针对需要安装的软件查看对应的内容:
据,并可以通过创建标注任务进行数据标注。 文件型数据标注状态 数据标注状态分为“未标注”和“已标注”。 未标注:仅导入标注对象(指待标注的图片,文本等),不导入标注内容(指标注结果信息)。 已标注:同时导入标注对象和标注内容,当前“自由格式”的数据集不支持导入标注内容。 为了确保
ss表示秒,SSS表示毫秒)。 @modelarts:feature Object 物体检测标签专用内置属性:形状特征,类型为List。以图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox
907版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6
MA-Advisor使用指导 工具安装 下载ma-advisor安装包至开发环境中。 (可选)完成软件包签名校验。 下载软件包签名校验文件。 安装openssl并进行软件一致性验证,具体签名校验命令如下: openssl cms -verify -binary -in ma_ad
# nerdctl 工具查看 nerdctl --namespace k8s.io image list Step3 制作推理镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6
p结构如下: 表1 ModelStep 属性 描述 是否必填 数据类型 name 模型注册节点的名称。只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符,一个Workflow里的两个step名称不能重复 是 str inputs 模型注册节点的输入列表
表1 LabelingStep 属性 描述 是否必填 数据类型 name 数据集标注节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str inputs 数据集标注节点的输入列表
单击左侧菜单栏对象,进入对象列表。单击存放文件的对象名称,并找到具体的文件,可在文件列表的“加密状态”列查看文件是否加密。文件加密无法取消,请先解除桶加密,重新上传图片或文件。 检查OBS桶的ACLs设置 进入OBS管理控制台,查找对应的OBS桶,单击桶名称进入概览页。 在左侧菜单栏选择“访问权限控制>桶
driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907-xxx.zip软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 说明:
选择数据所在OBS桶的存储区域,以控制台实际可选值为准。 存储位置 选择待发布数据集所在对象存储服务(OBS)的路径。 数据类型 至少选择一个数据集类型的标签。 可选标签:图片、音频、视频、文本、表格、其他 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的可以查看许可证详情。 谁可以看
返回 {"mnist_result": 7} 在上面的代码示例中,完成了将用户表单输入的图片的大小调整,转换为可以适配模型输入的shape。首先通过Pillow库读取“32×32”的图片,调整图片大小为“1×784”以匹配模型输入。在后续处理中,转换模型输出为列表,用于Restful接口输出展示。
ss表示秒,SSS表示毫秒)。 @modelarts:feature Object 物体检测标签专用内置属性:形状特征,类型为List。以图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox
pytorch_2.1.0 驱动 23.0.6 获取镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.909-xxx.zip软件包中的AscendCloud-AIGC-6.3.909-xxx.zip,AscendCloud-OPP-6.3.909-xxx.zip 说明:
ReleaseDatasetStep 属性 描述 是否必填 数据类型 name 数据集版本发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str inputs 数据集版本发布节点的输入列表
placeholder_type=wf.PlaceholderType.INT, default=64, description="每步训练的图片数量(单卡)")), wf.AlgorithmParameters(name="eval_batch_size",
当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。