已找到以下 104 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 推荐结果多样性打散 - 推荐系统 RES

    配置“在线服务”参数 如果用户已经创建自定义场景,可以直接修改“在线服务”相关参数。 选择已经创建的自定义场景,单击名称,进入到自定义场景详情页。 单击已经创建的在线服务名称下面的“编辑”,进入编辑页面。 图1 修改在线服务参数 打开高级选项,进行打散功能的配置,选取相应的属性即可完成配置。 “高级类型”:选择“打散”。

  • 绑定或解绑资源 - 推荐系统 RES

    、CloudTable开启IAM认证的集群和DIS通道供用户选择进行绑定或解绑。 背景信息 绑定资源之后,将该资源应用于RES的作业训练及在线作业获取推荐结果。 解绑资源完成资源释放,已经解绑的资源不再应用于RES的相关计算。 已开通计算引擎DLI、存储平台CloudTable、数据接入资源DIS相关服务。

  • 避免物品重复推荐(曝光过滤) - 推荐系统 RES

    参考数据源管理进行创建。 配置“在线服务”参数 如果用户已经创建自定义场景,可以直接修改“在线服务”相关参数。 选择已经创建的自定义场景,单击名称,进入到自定义场景详情页。 单击已经创建的在线服务名称下面的“编辑”,进入编辑页面。 图1 修改在线服务参数 修改“过滤(黑名单)”下面的参数。

  • 全局特征信息文件 - 推荐系统 RES

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

  • 自定义场景简介 - 推荐系统 RES

    略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用trace_id

  • 自定义场景(热度推荐) - 推荐系统 RES

    召回策略成功,继续单击“下一步”,跳过可选步骤过滤策略和排序策略,进入“在线服务”页面,进行在线服务的配置。 在“在线服务”配置页面,进行在线流程配置,配置完成后单击“创建并完成”。 “在线流程”:自定义在线流程名称,此样例命名为“hot-flow”。 “推荐候选集”:选择步骤3

  • ModelArts - 推荐系统 RES

    推荐系统对离线数据进行质量检测,然后将检测合格的数据通过特征工程处理为可用于召回策略、过滤规则、排序策略、近线策略的数据。通过上述作业训练出可用于在线服务的推荐候选集。当在线作业运行完成,您可以通过效果评估检测推荐结果。 使用推荐系统 推荐系统操作流程 准备工作 创建华为云账号 进行服务授权 数据源 准备离线数据

  • 创建自定义场景 - 推荐系统 RES

    排序策略-近线排序策略 近线排序策略用于对在线实时数据排序。如果使用在线排序模型,需在排序策略-近线特征工程中创建完成后才可以正常使用排序策略。 在“创建自定义场景”页面,进入“排序策略”页签,单击“添加近线排序策略”。 进行在线学习参数配置。 名称:自定义在线排序策略名称。 离线排序策略:

  • 提交实时流近线作业 - 推荐系统 RES

    异常数据记录日志路径。路径填写到文件夹。 advanced_search 否 Map<String, List<String>> 自定义搜索条件。 会将key强制转换成value中的值进行检索。 candidate 否 JSON 详情请参见表14。 tag_reduce_rate 否 Double 兴趣标

  • 离线作业简介 - 推荐系统 RES

    集,用于在线服务计算得到推荐结果。RES提供了多种推荐离线作业功能,您可以直接使用得到满意的推荐候选集。 用户通过数据质量作业对离线数据进行质量检测,然后将检测合格的数据通过特征工程处理为可用于召回策略、过滤规则、排序策略、近线作业的数据。通过上述离线作业训练出可用于在线服务的推

  • 工作空间简介 - 推荐系统 RES

    工作空间简介 RES工作空间帮您实现离线作业、近线作业和在线服务隔离的功能,达到不同角色用户信息隔离管理的目的。 如果您未开通企业项目管理服务的权限,您可以在RES创建自己独立的工作空间。 如果你开通了企业项目管理服务的权限,可以在创建工作空间的时候绑定企业项目,并在企业项目下添

  • 排序策略-离线排序模型 - 推荐系统 RES

    Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称

  • 配额说明 - 推荐系统 RES

    RES服务配额 资源 限制条件 建议 推荐引擎预测接口中最多请求结果数量 20 可提工单支持更高规格。 单份画像数据中最多支持的特征数量 30 单场景在线服务最多支持每秒请求的次数(TPS) 200 数据源个数 5 场景个数 10 单场景下推荐预测返回的结果集个数 20 如果当前资源配额限制

  • API概览 - 推荐系统 RES

    删除训练作业信息。 在线服务 新建在线服务 新建在线服务元数据,新建成功之后可手动发布此服务。 查询在线服务详情 根据给定的workspace_id和resource_id及category查询在线服务。 修改在线服务参数 修改指定在线服务的元数据内容。 删除在线服务 删除在线服务实例。 调度

  • 效果评估 - 推荐系统 RES

    式。 数据时间范围 被统计数据的起始时间和终止时间。 统计间隔(天) 统计间隔,以天为单位,每隔多少天计算一次指标,大于0。 在线服务 选择已发布的在线服务进行推荐效果指标计算。 结果保存路径 效果评估结果在OBS的文件输出路径。 指标 推荐服务效果评估指标,通过指标后的下拉框选

  • 自定义场景 - 推荐系统 RES

    自定义场景 推荐引擎和排序引擎有什么区别? RES支持哪些自定义策略? 重新运行被在线服务所引用的召回策略,是否需要重新部署在线服务? 在线服务获得推荐的调用次数如何计算? 自定义场景关闭后,为什么会自动启动?

  • 发布或终止自定义场景 - 推荐系统 RES

    列表页面和自定义场景详情页面进行操作。 发布或终止自定义场景默认对该场景下的所有作业执行发布或终止操作,包括召回策略、过滤规则、排序策略和在线服务等作业。 前提条件 已存在创建成功的自定义场景。 发布自定义场景 登录RES管理控制台,在左侧导航栏中选择“推荐业务” > “自定义场景”,进入自定义场景列表页面。

  • 计费说明 - 推荐系统 RES

    49*4=1.96元。 在线服务 应用于在线服务预测计费。 TPS统计规则为每小时平均TPS,例如每秒调用5次,持续调用1小时,TPS即为5,这一小时按需计费消耗为5*0.95=4.95元。 最终纳入计费的有效TPS值由两部分决定: 配置TPS:客户在场景中配置的在线服务TPS。 说明:

  • 过滤规则 - 推荐系统 RES

    读取配置源文件来进行离线计算。 资源名,指定DLI运行作业的资源规格。 存储平台 服务名称,CloudTable作为存储平台,用于用户推荐在线数据和推荐候选集的存储。 集群名称,选择“资源中心”绑定的CloudTable集群名称。 表名,存储的表格名称。 过滤规则别名 自定义过滤

  • 产品功能 - 推荐系统 RES

    基于用户历史行为计算物品相似性,实时更新候选列表,提升用户体验,提高转化率支持多种召回、过滤、排序算子自由组合,训练形式上支持离线批处理、近线流处理、在线实时处理的三种数据处理方式,提供完备的一站式推荐平台,可快速设置运营规则进行AB测试。 功能优势: 全开放推荐流程,用户根据业务自定义推荐流程。