检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和模型部署流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 M
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减
下线旧版自动学习对现有用户的使用是否有影响? 用户将无法再使用旧版自动学习的功能,且因旧版自动学习文件均存储于ModelArts统一管理账号下,用户无法找回旧版自动学习的作业记录。 旧版自动学习如何升级到新版自动学习? 请参考新版自动学习指导文档来体验新版自动学习。 父主题: 下线公告
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理
imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。 解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具
使用AI Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训
模型训练使用流程 AI模型开发的过程,称之为Modeling,一般包含两个阶段: 开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整超参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。