检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
合。请检查训练参数中的“训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同? 当您将
文本、视频、预测和其他类(自定义)数据集支持文件夹或单个文件导入,导入界面提示用户:“请选择文件夹或文件”。 图1 支持导入单个文件示例 图片、视频(事件检测)、气象类数据集仅支持文件夹导入,导入界面提示用户:“请选择文件夹”。 图2 不支持导入单个文件示例 父主题: 大模型使用类
的数据,以确保模型学习的质量。 过滤不适当内容 :大模型的训练数据可能包含不适当或有害的内容。使用自然语言处理工具和规则集来检测并过滤掉这些内容,以确保训练数据的安全性和道德性。 同质数据处理 :同质的数据可能导致模型的偏倚和过拟合。可以使用哈希算法或文本相似度测量方法来检测并去除重复的数据条目。
jsonl 图片类 仅图片 jpg、jpeg、png、bmp、tar包 图片+Caption 图片格式支持:jpg、jpeg、png、bmp,所有图片需保存为tar包。 Caption格式支持:jsonl 图片+QA对 图片格式支持:jpg、jpeg、png、bmp,所有图片需保存为tar包。
识。 例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。
在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图3 横向比对提示词效果 父主题: 横向比较提示词效果
在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据
在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。 ensemble_noise_perlin_y 用于选择集合预报的Perlin加噪y纬度方向的尺度。 输出设置 用于选择是否输出图片结果。 天气/降水预测场景的参数配置示例如下:
科学计算大模型的学习率调优策略如下: 学习率太小时,损失曲线几乎是一条水平线,下降非常缓慢,此时可以增大学习率,使用学习率预热(Warm-up)的方法,在训练初期逐步增加学习率,避免初始阶段学习率过小。 学习率太大时,损失曲线剧烈震荡,甚至出现梯度爆炸的问题,可以使用学习率衰减(De
支持数据发布的数据集类型 数据类型 数据评估 数据发布 文本类 √ √ 图片类 √ √ 视频类 √ √ 气象类 - √ 预测类 - √ 其他类 - √ ModelArts Studio大模型开发平台支持将文本类、图片类数据集发布为两种格式: 标准格式:适用于广泛的数据使用场景,满足大
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对,以查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发
Prop,可以调整学习率。取值范围:(0,1)。 权重衰减系数 通过在损失函数中加入与模型权重大小相关的惩罚项,鼓励模型保持较小的权重,防止过拟合或模型过于复杂,取值需≥0。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。
不同业务场景和模型应用对数据有不同的要求。数据加工能够根据特定业务需求进行定制化处理,确保数据满足应用场景的需求,从而提高数据和模型的匹配度,提升业务决策和模型预测的准确性。 提升数据处理效率 通过平台提供的自动化加工功能,用户可以高效完成大规模数据的预处理工作,减少人工干预,提
训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它
数据集加工算子介绍 文本类加工算子介绍 视频类加工算子介绍 图片类加工算子介绍 气象类加工算子介绍 父主题: 加工数据集
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
加工数据集 数据集加工场景介绍 数据集加工算子介绍 加工文本类数据集 加工图片类数据集 加工视频类数据集 加工气象类数据集 管理加工后的数据集 父主题: 使用数据工程构建数据集
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
对视频的基础质量(清晰度、亮度、模糊、画面抖动重影、低光过曝、花屏等)进行评分。分值范围(0, 1),数值越高质量越好,评分>0.05可认为是视频基础质量较高的视频。 美学评分 从内容(吸引人,清晰度)、构图(目标物位置良好)、颜色(有活力,令人愉悦)、光线(光线明显有对比度)、轨迹(连续
景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短度,包含参数丰富等场景;数据在长短、扁平与深层嵌套、对接客户api接口数量上全覆盖。 数据中需要提供JSON的