检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Cache特性服务的代码样例 服务启动方式 接口 服务启动基础命令 offline - LLM(model="facebook/opt-125m", enable_prefix_caching=True) online vllm python -m vllm.entrypoints.api_server \
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
obs_url String 训练作业日志保存的OBS地址。 host_path String 训练作业日志保存的宿主机的路径。 表54 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
查看训练作业事件 训练作业的(从用户可看见训练作业开始)整个生命周期中,每一个关键事件点在系统后台均有记录,用户可随时在对应训练作业的详情页面进行查看。 方便用户更清楚的了解训练作业运行过程,遇到任务异常时,更加准确的排查定位问题。当前支持的作业事件如下所示: 训练作业创建成功 训练作业创建失败报错:
权限配置指南 》> 典型场景配置案例,查找授予OBS桶权限的指导。 获得OBS桶的读写权限后,您可以在Notebook中,使用moxing接口,访问对应的OBS桶,并读取数据。举例如下: import moxing as mox mox.file.copy_parallel('o
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
分析错误时:训练镜像先看日志,推理镜像先看API的返回。 可以通过命令查看容器输出到stdout的所有日志: docker logs -f 39c9ceedb1f6 一般在做推理镜像时,部分日志是直接存储在容器内部的,所以需要进入容器看日志。注意:重点对应日志中是否有ERROR(包括,容器启动时、API执行时)。
obs_url String 训练作业日志保存的OBS地址。 host_path String 训练作业日志保存的宿主机的路径。 表54 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题:
s Key Id和Secret Access Key)。 “project_id”即项目ID,获取方式如下: 在“我的凭证”页面,单击“API凭证”,在“项目列表”中可查看项目ID和名称(即“项目”)。多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 图1 查看项目ID
MaaS大模型即服务平台功能介绍 对于普通企业来说,大模型开发不仅需要强大的算力,还需要学习训练、部署的相关参数配置和规格选择等专业知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支
训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 无成功响应参数。 表2 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
边缘节点,推送模型。 ModelArts基于Snt3高性能AI推理芯片的深度优化,具有PB级别的单日推理数据处理能力,支持发布云上推理的API百万个以上,推理网络时延毫秒。 父主题: Standard功能介绍
程会消耗较长时间。 处理方法 在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“.tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。
参数 是否必选 参数类型 描述 description 是 String 需要更改的训练作业的描述信息。 无成功响应参数 表3 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管