检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
登录ModelArts控制台,左侧菜单选择“模型管理”; 单击“创建”,进入创建模型界面,元模型选择“从容器镜像中选择”,选择自定义镜像; 配置“容器调用接口”和端口号,端口号与模型配置文件中的端口保持一致; 设置完成后,单击“立即创建”,等待模型状态变为“正常”; 重新部署在线服务。 父主题:
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎为pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
5055: 订阅已过期。 处理方法 在权限管理页面进行依赖服务的授权。完成委托授权请参考了解ModelArts权限配置。 检查是否有OBS权限或者接口操作权限。 订阅已过期,可以在AI Gallery确认可以续订后,重新订阅。 父主题: 模型管理
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
Cache特性服务的代码样例 服务启动方式 接口 服务启动基础命令 offline - LLM(model="facebook/opt-125m", enable_prefix_caching=True) online vllm python -m vllm.entrypoints.api_server \
} 这里Step指定为0表示只对首个Step进行数据Dump。task指定为statistics表示使用统计量模式,该模式下针对整网训练API输入输出保存最大值、最小值、均值等统计量信息比对,落盘数据量较小。GPU和NPU环境依次进行数据Dump,正常执行结束标识如下图回显Exception:
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
Standard开发环境 软件开发的历史,就是一部降低开发者成本,提升开发体验的历史。在AI开发阶段,ModelArts也致力于提升AI开发体验,降低开发门槛。ModelArts Standard开发环境,以云原生的资源使用和开发工具链的集成,目标为不同类型AI开发、探索、教学用户,提供更好云化AI开发体验。
Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
Notebook内置MoXing Framework模块,ModelArts mox.file提供了一套更为方便地访问OBS的API,允许用户通过一系列模仿操作本地文件系统的API来操作OBS文件。具体参见在Notebook中使用Moxing命令。 父主题: 使用Notebook进行AI开发调试
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset