检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
传至OBS桶。 上传OBS的文件规范: 文件名规范:不能有+、空格、制表符。 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下
#在myenv的环境中安装名字为numpy的package conda install -c https://conda.anaconda.org/anaconda numpy #使用源 https://conda.anaconda.org/anaconda 安装numpy conda
AI应用页签的背景图展示在AI应用列表。建议使用16:9的图片,且大小不超过7MB。 如果未上传图片,AI Gallery会为AI应用自动生成封面。 应用描述 否 输入AI应用的功能介绍,AI应用创建后,将展示在AI应用页签上,方便其他用户了解与使用。 支持0~100个字符。 参
查看数据集资产发布信息 在数据集列表中,单击某个数据集名称进入数据集详情页。选中右上角“发布 > 资产发布列表”,可以查看资产发布记录。 发布成功后,会生成资产链接,用户可以单击链接跳转到资产的详情页面。 删除发布的数据集 当您需要删除发布在AI Gallery中的数据集时,可以执行如下步骤进行删除。
用。 开发者可以通过浏览器入口以Notebook方式访问,也可以通过VSCode远程开发的模式直接接入到云上环境中完成迁移开发与调测,最终生成适配昇腾的推理应用。 当前支持以下两种迁移环境搭建方式: ModelArts Standard:在Notebook中,使用预置镜像进行。 ModelArts
者对模型了解不多的情形下都推荐使用预检工具,检查第一个步骤或Loss明显出现问题的步骤。它可以抓取模型中API输入的数值范围,根据范围随机生成输入,用相同的输入分别在NPU(GPU)和CPU上执行算子,比较输出差异。预检最大的好处是,它能根据算子(API)的精度标准来比较输出结果
您可以单击训练作业名称,进入详情页面,了解训练作业的“配置信息”、“日志”、“资源占用情况”和“评估结果”等信息。您也可以在配置的“训练输出位置”对应的OBS目录下获得训练生成的模型。 步骤4:创建AI应用 在训练作业详情页的右上角单击“创建AI应用”,进入创建AI应用页面。 也可以在ModelArts管理控制台,选择“资产管理
'{print $(NF-1) " " $0}' >> aishell.scp 在torch_npu目录下制作label.txt文件: wget https://www.modelscope.cn/datasets/modelscope/speech_asr_aishell1_testset
对于昇腾硬件的适配与支持。对AI有使用诉求的企业、NLP领域开发者,可以借助这个库,便捷地使用昇腾算力进行自然语言理解(NLU)和自然语言生成(NLG)任务的SOTA模型开发与应用。 支持的模型结构框架 AI Gallery的Transformers库支持的开源模型结构框架如表1所示。
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
对象。 Manifest文件可以由用户、第三方工具或ModelArts数据标注生成,其文件名没有特殊要求,可以为任意合法文件名。为了ModelArts系统内部使用方便,ModelArts数据标注功能生成的文件名由如下字符串组成:“DatasetName-VersionName.m
Workflow运行流程 项目类型介绍 图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“
在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 OBS上传文件的规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。 如需要提前上传待标注的文件,请创建一个空文件夹,然后将文本文件保存在该文件夹下,文本文件的目录结构如:“/bucketName/data/text
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。
文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。 当模型的“任务类型”是除“文本问答”和“文本生成”之外的类型(即自定义模型)时,上传的模型文件要满足自定义模型规范,否则该模型无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。
带来了极大的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。
service is https"} 部署在线服务使用的模型是从容器镜像中导入时,容器调用接口协议填写错误,会导致此错误信息。 出于安全考虑,ModelArts提供的推理请求都是https请求,从容器镜像中选择导入模型时,ModelArts允许使用的镜像提供https或http服务,但