检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
_vllm.sh及SSL证书。此处以chatglm3-6b为例。 ascend_vllm代码包在Step9 构建推理代码已生成。 模型权重文件获取地址请参见表1。 推理启动脚本run_vllm.sh制作请参见•创建推理脚本文件run_vllm.sh。 SSL证书制作包含cert.pem和key
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
用报错。 推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm
用报错。 推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm
用报错。 推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm
建AI应用报错。 推理启动脚本run_vllm.sh制作请参见•创建推理脚本文件run_vllm.sh。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm
用报错。 推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm
用报错。 推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm
使用Windows下生成的文本文件时报错找不到路径? 问题现象 当在Notebook中使用Windows下生成的文本文件时,文本内容无法正确读取,可能报错找不到路径。 原因分析 Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。
Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 其优势主要如下: 上下文引导:通过提供特定的提示或上下文信息,模型可以更好地理解生成内容的方向。 约束生成:可以设定某些限制条件,如关键词、主题或风格,使生成的内容更加一致和相关。 提高质量:通过引导,生成的文本通常更具逻辑性和连贯性,减少无关信息的出现。
moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 问题现象 使用MoXing训练模型,“global_step”放在Adam名称范围下,而非MoXing代码中没有Adam名称范围,如图1所示。其中1为
Quality Discriminator对生成结果的质量进行规范,提高生成视频的清晰度。 引入预训练的唇音同步判别模型Pre-trained Lip-sync Expert,作为衡量生成结果的唇音同步性的额外损失,可以更好的保证生成结果的唇音同步性。 方案概览 本方案介绍了在ModelArts的Lite
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 图说ModelArts 图说ModelArts 立即使用
统对象的读写。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/notebooks/{instance_id}/storage
训练场景和方案介绍 Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展SDXL和SD1.5模型的训
Controlnet训练 使用文本提示词可以生成一副精美的画作,然而无论再怎么精细地使用提示词来指导模型,也无法描述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet
根据部署在线服务生成的服务对象删除服务。 根据查询服务对象列表返回的服务对象删除服务。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务
ogVideoX的代码基础适配修改,可以用于NPU芯片训练。 CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练