检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma
--per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 参考启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 使用llm-compre
x86_64架构的主机,操作系统使用ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18
参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:
"stream": false }' 执行推理参考 配置服务化参数。Ascend vllm使用该特性需参考表1,其它参数请参考启动推理服务。 启动服务。具体请参考启动推理服务。 精度评测和性能评测。具体请参考推理服务精度评测和推理服务性能评测。 父主题: 投机推理
景类似,但功能更加强大。当前该能力适用于数据集创建节点、数据集标注节点、数据集导入节点、数据集版本发布节点、作业类型节点、模型注册节点以及服务部署节点。 控制单节点的执行 通过参数配置实现 from modelarts import workflow as wf condition_equal
PU资源部署在线服务时会收取少量资源费用,具体费用以界面信息为准。 参数配置完成后,单击“下一步”,确认规格参数后,单击“提交”启动在线服务的部署。 进入“部署上线 > 在线服务”页面,等待服务状态变为“运行中”时,表示服务部署成功。单击操作列的“预测”,进入服务详情页的“预测”页面。上传图片,预测结果。
创建Workflow数据集版本发布节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这
自定义镜像训练作业配置节点间SSH免密互信 当用户使用基于MPI和Horovod框架的自定义镜像进行分布式训练时,需配置训练作业节点间SSH免密互信,否则训练会失败。 配置节点间SSH免密互信涉及代码适配和训练作业参数配置,本文提供了一个操作示例。 准备一个预装OpenSSH的自
附录:微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
训练的权重转换说明 以llama2-13b举例,使用训练作业运行obs_pipeline.sh脚本后,脚本自动执行权重转换,并检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行性能比较脚本 完成benchmark启动任务。 进入test-benchmark目录执行命令。 ascendfactory-cli performance <cfgs_yaml_file> --baseline
SFT全参微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
SFT全参微调训练任务 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决? 问题现象 或 原因分析 Notebook实例重新启动后,公钥发生变化,OpenSSH核对公钥发出警告。 解决方法 在VS Code中使用命令方式进行远程连接时,增加参数"-o
从OBS目录导入数据到数据集 前提条件 已存在创建完成的数据集。 准备需要导入的数据,具体可参见从OBS目录导入数据规范说明。 需导入的数据,已存储至OBS中。Manifest文件也需要存储至OBS。详细指导请参见创建OBS桶用于ModelArts存储数据。 确保数据存储的OBS
支持的模型列表 表1 支持的大语言模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行预训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf