检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
是否能满足最终的迁移效果需要进行系统的评估。如果您仅需要了解迁移过程,可以先按照本文档的指导进行操作并熟悉迁移流程。如果您有实际的项目需要迁移,建议填写下方的推理业务迁移评估表,并将该调研表提供给华为云技术支持人员进行迁移评估,以确保迁移项目能顺利实施。 通用的推理业务及LLM推理可提供下表进行业务迁移评估:
ken的值)。 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 model_version String 模型版本。 source_job_version String 来源训练作业的版本。 source_location String 模型所在的OBS路径或SWR镜像的模板地址。
运行模型需要的环境变量键值对。 instance_count Integer 模型部署的实例数。 src_path String 批量任务输入数据的OBS路径。 dest_path String 批量任务输出结果的OBS路径。 req_uri String 批量任务中调用的推理路径。
列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
流水账单”中,“消费时间”即按需产品的实际使用时间。 查看自动学习和Workflow的账单 自动学习和Workflow运行时,在进行训练作业和部署服务时,会产生不同的账单。 训练作业产生的账单可参考查看训练作业的账单查询。 部署服务产生的账单可参考查看在线服务的账单查询。 查看Notebook的账单 登录
列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
框架时,请选择您使用的引擎所对应的运行时环境。目前支持的运行时环境列表请参见推理支持的AI引擎。 需要注意的是,如果您的模型需指定CPU或GPU上运行时,请根据runtime的后缀信息选择,当runtime中未包含cpu或gpu信息时,请仔细阅读“推理支持的AI引擎”中每个runtime的说明信息。
来源训练作业的版本,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。
json文件;请务必在dataset_info.json文件中添加数据集描述。 关于数据集文件的格式及配置,请参考data/README_zh.md的内容。可以使用HuggingFace/ModelScope上的数据集或加载本地数据集。 上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_
分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业状态显示“审核作业初始化” 训练作业进程异常退出 训练作业进程被kill
卡死等)导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。 checkpoint的机制是:在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重
ce<=1,表示机器标注的置信度。 position Object 标注对象的位置信息,详细请见表5。 parts Object 子标注对象列表,即嵌套的voc_object列表,详细请见表4。 mask_color String 图像分割mask图像的颜色。 表5 Position说明
index必须是从0开始的正整数,当index设置不规则不符时,最终的请求将忽略此参数。配置映射规则后,其对应的csv数据必须以英文半角逗号分隔。 “输出数据目录位置” 选择批量预测结果的保存位置,可以选择您创建的空文件夹。 “计算节点规格” 系统将根据您的AI应用匹配提供可用的计算资源。请
并将生成的结果数据异步持久化到OBS对象存储中长期低成本保存。 图1 基于OBS+SFS Turbo的华为云AI云存储解决方案 OBS + SFS Turbo存储加速的具体方案请查看: 面向AI场景使用OBS+SFS Turbo的存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。