检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下。 df -h 步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6
ep的输出) import modelarts.workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info"
数据盘高级配置:部分规格支持在数据盘高级配置参数中设置数据盘的挂载方式,具体如下: 默认:仅是将云硬盘挂载到资源池上,未对挂载的云硬盘做任何处理,比如分区等。 挂载到指定目录:支持设置“数据盘挂载到的指定路径”和“写入模式”,包括线性和条带化。 以本地持久卷挂载:支持“持久卷
如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下。 df -h 步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6
如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下。 df -h 步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6
型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考使用AWQ量化或使用SmoothQuant量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
开启此配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
torchair_cache文件夹,避免由于缓存文件与实际推理不匹配而报错。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
自动标注的算法类型。可选值如下: fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注的样本做半监督训练 ambiguity 否 Boolean 是否通过图片模糊度来聚类。 annotation_output 否 String 主动学习标注结果输出路径。
。在调用之前您需要进行APP认证鉴权。 当使用APP认证,且开启了简易认证模式,API请求既可以选择使用Appkey和AppSecret做签名和校验,也可以选择使用AppCode进行简易认证(ModelArts默认启用简易认证)。推荐使用AppKey/AppSecret认证,其安全性比AppCode认证要高。
率,改善推理服务的性能。 当从第三方推理框架迁移到使用ModelArts推理的模型管理和服务管理时,需要对原生第三方推理框架镜像的构建方式做一定的改造,以使用ModelArts推理平台的模型版本管理能力和动态加载模型的部署能力。本案例将指导用户完成原生第三方推理框架镜像到Mode
images即可查看到该镜像 docker load --input 自定义名称.tar 到此环境配置就结束了,后续可以根据相关的迁移指导书做业务迁移到昇腾的开发调测工作。 父主题: 配置Lite Server软件环境
images = np.array(images,dtype=np.float32) # 对传入的多个样本做batch处理,shape保持和训练时输入一致 images.resize((len(data), 784))
自动标注的算法类型。可选值如下: fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注的样本做半监督训练 ambiguity Boolean 是否通过图片模糊度来聚类。 annotation_output String 主动学习标注结果输出路径。
投机小模型训练 步骤五:训练生成权重转换成可以支持vLLM推理的格式 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
具体可参考Eagle投机小模型训练章节中的步骤五:训练生成权重转换成可以支持vLLM推理的格式。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
自动标注的算法类型。可选值如下: fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注的样本做半监督训练 ambiguity Boolean 是否通过图片模糊度来聚类。 annotation_output String 主动学习标注结果输出路径。