检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询训练作业候选集 功能介绍 查询给定workspaces_id和指定resource_id下的候选集。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/resourc
Service,简称OBS)进行数据源以及黑白名单和用户数据的存储。因此,在使用RES之前您需要开通OBS服务并创建桶,然后在OBS桶中上传用户数据用于推荐作业的计算。 需要存放在OBS桶中的数据包括: 离线数据源:包含用户类数据,物品类数据,行为数据以及推荐候选列表。 黑名单和白名单:黑名单和白名单的过滤配置,便于
是否有样例数据支撑我进一步了解RES? RES提供了可用来测试的全量数据,包括智能场景和自定义场景的样例测试。 智能场景的样例测试,可参见智能场景(猜你喜欢)。 自定义场景的样例测试,可参见自定义场景(热度推荐)。 父主题: 基础问题
应用场景 推荐系统支持深度智能挖掘用户和物品的关联关系,将对应场景的推荐结果推送给用户,代替低纬度的人工规则,提升了相关运营指标和用户的体验。包含了互联网信息流,短视频/直播/音乐/阅读,广电媒资,社交,电商等场景。 RES+电商应用场景 场景描述 电商场景中,通常涉及首页推荐、
特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 排序策略-离线特征工程 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之
如何查看RES正在收费的作业? 在RES管理控制台,单击左侧菜单栏的“总览”,您可以在“总览”区域查看智能场景和自定义场景中处于“运行中”状态的作业。再根据实际情况进入对应管理页面,“终止”或“删除”对应场景停止收费。 父主题: 计费相关
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
创建的场景是否会立即发布? 新创建的智能场景和自定义场景不会立即发布。 在新创建的场景中,需要完成相关推荐配置才能完成整体场景的创建。配置完成的场景处于待发布状态,需要在场景列表页面对目标场景执行“发布”操作,才能运行场景中涉及的作业,完成场景的发布。 父主题: 基础问题
离线数据和近线实时数据如何配合使用? 在推荐系统初始化阶段,需要用户提供批量的离线数据源并按照推荐系统要求的数据格式上传至OBS,完成数据的检测和导入。 近线实时数据源推荐使用RES SDK上传,此操作所有的数据更新都是实时生效的。 父主题: 数据源
在使用RES时需使用到其他的资源,因此需要先开通相关服务才可以正常使用RES。包含服务如下: 开通计算引擎DLI、ModelArts 存储平台CloudTable (可选)数据接入资源DIS 各服务的计费请参见:产品价格详情。 开通计算引擎DLI、ModelArts DLI用于推荐系统的离线计算和
数据探索是什么?近线实时数据如何在数据探索中的报告体现? 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据会实时入库
推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可完成对任务状态的监控,并且可以根据任务状态决定是否需要重新执行任务。
为防止资源滥用,平台限定了各服务资源的配额,对用户的资源数量和容量做了限制。 表1 RES服务配额 资源 限制条件 建议 推荐引擎预测接口中最多请求结果数量 20 可提工单支持更高规格。 单份画像数据中最多支持的特征数量 30 单场景在线服务最多支持每秒请求的次数(TPS) 200 数据源个数
编辑或删除工作空间 工作空间页面主要列举了当前已创建的工作空间项目信息,包括工作空间“名称”、“状态”、“绑定的企业项目”、“创建人”、“创建时间”、“更新时间”和“操作”。 前提条件 已存在创建成功的工作空间。 编辑工作空间 您可以对创建的工作空间进行修改操作,具体操作如下: 登录RE
UserCF算法生成的用户-物品列表候选集。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。
据中各种标签的分布情况。 图3 分布统计 物品报表:根据不同数据格式展示物品数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。 行为报表:行为报表展示各种行为类型以及该数据中此行为出现的次数。 画像查询:可以查询指定的用户或物品画像信息,包括静态和动态。 父主题:
自定义场景基于用户群体不同推荐场景的需求,提供了多种多样的推荐策略和算法,实现了端到端的自定义推荐场景搭建,使每一个推荐场景都能得到针对性的推荐效果提升。 前提条件 已经存在创建成功并完成数据探索的数据源。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的OBS目录与RES在同一区域。
增加用户特征。单击特征后方的删除不需要的用户特征。 物品特征 列表中展示抽取的物品特征和参数类型,此特征会额外应用于所选字段的功能。您可以根据业务需求单击增加物品特征。单击特征后方的删除不需要的物品特征。 您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中:
阈值:阈值是用来衡量用户行为有效性的标准, 当数据源的actionMeasure的值大于阈值时, 当前用户行为有效。 去重:您可以单击勾选,根据用户对行为记录去重。 指标设置 指标名称:请您定义评估的指标名称。 指标公式:用户指定自定义指标公式,如:A/(A+B),参数A、B代表自定义参数的参数别名。只支持+、-、*、/。
候选集的召回策略 召回候选集的策略。 兴趣标签召回候选集:根据用户画像的兴趣标签召回候选集。 实时标签召回候选集:根据用户实时操作的物品的标签召回候选集。 默认兴趣标签召回候选集。 兴趣宽度 生成候选集中的兴趣宽度,值越小候选集中的类型越少。 说明: 选择兴趣宽度数量对应的,权重