检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
压缩盘古大模型 N2基础功能模型、N4基础功能模型、经有监督微调训练以及RLHF训练后的N2、N4模型可以通过模型压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。
为什么微调后的模型,回答总是在重复某一句或某几句话 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。
开启相应日志打印信息: import logging # 打印在命令行(与打印在文件不同时生效) logging.basicConfig(level=logging.DEBUG) # 打印在日志文件(与打印在命令行不同时生效) logging.basicConfig(level=logging
多轮问答场景,为什么微调后的效果不好 当您的目标任务是多轮问答,并且使用了多轮问答数据进行微调,微调后却发现多轮回答的效果不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。
click(lambda: None, None, chatbot, queue=False) demo.queue() demo.launch() 终端命令行下执行python3 chat.py运行应用,效果如下。 父主题: 盘古应用开发SDK实践
可以在“模板”页签查看,也可以返回数据清洗列表,在“清洗模板 > 我的模板”中查看。 图5 发布模板 清洗流程搭建完成后,单击界面右上角“完成创建”。 单击清洗任务列表操作栏中的“启动”,启动清洗任务。 清洗任务完成后,可以单击“任务名称”,在任务详情页面,查看任务详情、评估指标、清洗明细及清洗流程图。
inputs=file_output, outputs=output, api_name="summary") demo.launch() 终端命令行下执行python3 doc_summary.py运行应用,效果如下。 父主题: 盘古应用开发SDK实践
评估盘古大模型 创建模型评估数据集 创建模型评估任务 查看评估任务详情
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 提示词工程
训练盘古大模型 选择模型与训练方法 创建训练任务 查看训练任务详情与训练指标 常见训练报错与解决方案
典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优
型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。
使用API调用模型前,需要先开通盘古大模型服务。 使用Postman调用API 获取API请求地址。 在“服务管理”页面,单击所需API的“查看详情”按钮。 图1 服务管理 在“模型列表”中选择需要调用的模型,单击操作栏中的“调用路径”,复制对应模型的API请求地址。 图2 获取API请求地址
比较候选提示词信息的差异性,可以单击开启“高亮展示差异点”。 图3 高亮差异点 下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图4 比较提示词的效果 父主题: 横向比较提示词效果
图1 提示词工程 勾选所需的提示词,并单击“保存到模板库”。 图2 保存提示词到模板库 进入“应用开发 > 提示词管理 > 我的提示词”页面,查看发布的提示词。 图3 我的提示词 父主题: 提示词工程
源名称,类型选择“边缘部署”,输入需要订购的推理算力,单击“确认订单”。 订购完成后,进入“平台管理 > 资产管理 > 模型推理资产”,可查看订购的边缘部署资产。 父主题: 部署为边缘服务
金的使用情况中,如何防止出现损失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加
模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数
版本: 0.1 - 语言: 中文 - 描述: 我是一个旅行规划助理,能够帮助用户查询天气、预订车票,以及查询旅游地的风景人文。 ## 技能 ### 技能-1 1. 通过调用{tool_id}工具,查询目的地的天气信息。 ### 技能-2 1. 能够根据用户需求和偏好,帮助用户规划旅行路线。