检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
些工具仅适用于表现良好的函数,也称为凸函数。行为良好的函数包含一个最优值,无论是最大值还是最小值。在这里,我们可以将函数视为具有单个山谷(最小)和/或山丘(最大)的表面。因此,非凸函数就像具有多个山谷和丘陵的表面。 凸函数的优化,也称为凸优化,适用于简单的任务,例如投资组合优化
Solution),可以从理论上证明求得的解是最优的,但随着问题规模的扩大(可能呈指数级或者阶乘级的增长),对于中等规模或者大规模的问题,在有限的时间内不可能求得最优解(对于我研究的问题,目前可以求得42个机器最优解)。这就需要在求解精读和运算时间之间有一个折衷和权衡(trade off)。对于大规模的问题,我
Solution,可以从理论上证明求得的解是最优的,但随着问题规模的扩大(可能呈指数级或者阶乘级的增长),对于中等规模或者大规模的问题,在有限的时间内不可能求得最优解(对于我研究的问题,目前可以求得42个机器最优解)。 这就需要在求解精读和运算时间之间有一个trade off。 对于大规模的问题,我们不
无论遗传算法,模拟退火算法,粒子群算法,还是后来的森林算法,烟花算法,蚁群算法,这一类都是全局寻优算法。简单的说就是人们把一些问题用一个优化模型建模了,解这个优化模型就可以得到问题的答案。但是这些模型不能或者很难用普通的数值优化办法快速得到结果,于是人们就借鉴大自然中的一些自然现
启发式算法(Heuristic Algorithm)是一种在解决问题时通过启发式规则来选择下一步操作的算法。它通常用于解决NP-hard问题,这些问题的精确算法在复杂度上是不可行的。 例如,贪心算法是一种常见的启发式算法,它在每一步都选择当前最优的选择。比如在寻找最短路径问题
机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量
衡量的性能有所提升。” 经验 E,任务 T 和性能度量 P 的定义范围非常宽广,在本书中我们并不会去试图解释这些定义的具体意义。相反,我们会在接下来的章节中提供直观的解释和示例来介绍不同的任务、性能度量和经验,这些将被用来构建机器学习算法。
启发式算法是以问题为导向(Problem-oriented)程序,根据问题的特殊结构或者性质来改进解。 一般情况下,启发式算法比精确方法更容易实现。 启发式算法包括构造算法(Construction Algorithm)和 改进算法 (Improvement Algori
启发式算法是以问题为导向(Problem-oriented)程序,根据问题的特殊结构或者性质来改进解。一般情况下,启发式算法比精确方法更容易实现。启发式算法包括构造算法(Construction Algorithm)和 改进算法 (Improvement Algorithm)等。对于构造算法(Construction
种架构的所有方法之间的异同。其分析的角度包括训练的数据集、网络结构的设计、它们在重建性能、训练策略和泛化能力上的效果。对于一些关键的方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据的目的是测试各类方法在全新场景下的泛化性能。这篇论文能够为研究深度立体匹配的研究人
1、回归算法回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法,逻辑回归,逐步式回归,多元自适应回归样条以及
降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w) =
降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数
问题描述很多问题的优化可以建模为基于序列的优化,如旅行商问题(TSP),排产问题,各类资源分配问题等,不同的序列有不同的优度。寻找最优序列的问题是NP难问题(其解空间为N!)。2. 解决方法 1. 常用两种方法解决这类问题:一种是启发式算法,基于问题本身的规则得到较好的可行解,本质是
促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对
机器学习算法和一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的
通俗地,模型的容量是指其拟合各种函数的能力。容量低的模型可能很难拟合训练集。容量高的模型可能会过拟合,因为记住了不适用于测试集的训练集性质。 一种控制训练算法容量的方法是选择假设空间(hypothesis space),即能够选为解决方案的学习算法函数集。例如,线
icy参数的,负责和环境交互产生数据,Learner是负责训练参数还有同步参数给Actor的。这就有个问题了,参数同步会有无法避免的延迟,那这个就违背了On-policy算法的更新原则,作者提出了一种很好的方式解决这个问题,对有延迟的数据进行修正使得on-policy的训练方式可
弱依赖关系的元素。这是因为减少表示大小的一种方式是找到并消除冗余。识别并去除更多的冗余使得降维算法在丢失更少信息的同时显现更大的压缩。 表示的概念是深度学习核心主题之一,因此也是本书的核心主题之一。本节会介绍表示学习算法中的一些简单实例。总的来说,这些实例算法会说明
结构化输出问题称为监督学习。支持其他任务的密度估计通常被称为无监督学习。学习范式的其他变种也是有可能的。例如,半监督学习中,一些样本有监督目标,但其他的没有。在多实例学习中,样本的整个集合被标记为含有或者不含有该类的样本,但是集合中单独的样本是没有标记的。