检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts与其他服务的关系 图1 ModelArts与其他服务的关系示意图 与统一身份认证服务的关系 ModelArts使用统一身份认证服务(Identity and Access Management,简称IAM)实现认证功能。IAM的更多信息请参见《统一身份认证服务用户指南》。
订阅算法物体检测YOLOv3_ResNet18(Ascend)训练失败报错label_map.pbtxt cannot be found 问题现象 使用订阅算法物体检测YOLOv3_ResNet18(Ascend) 进行训练作业,训练失败报错label_map.pbtxt cannot
在ECS中通过Dockerfile从0制作自定义镜像用于推理 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在
从0-1制作自定义镜像并创建AI应用 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为AI应用。本文详细介绍如何使用自定义镜像完成AI应用的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜
IAM 介绍ModelArts所有功能涉及到的IAM权限配置。 IAM权限简介 如果您需要为企业中的员工设置不同的权限访问ModelArts资源,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(Identity and Access Management,简称IAM)进
平台结合与100+客户适配、调优开源大模型的行业实践经验,沉淀了大量适配昇腾,和调优推理参数的最佳实践。通过为客户提供一键式训练、自动超参调优等能力,和高度自动化的参数配置机制,使得模型优化过程不再依赖于手动尝试,显著缩短了从模型开发到部署的周期,确保了模型在各类应用场景下的高性能表现,让客户能够更加聚焦于业务逻辑与创新应用的设计。
测试用户权限 由于权限配置需要等待15-30分钟生效,建议在配置完成后,等待30分钟,再执行如下验证操作。 使用用户组02中任意一个子用户登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。 验证ModelArts权限。
Step4 测试用户权限 由于4中的权限需要等待15-30分钟生效,建议在配置完成后,等待30分钟,再执行如下验证操作。 使用用户组02中任意一个子账号登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。
平台结合与100+客户适配、调优开源大模型的行业实践经验,沉淀了大量适配昇腾,和调优推理参数的最佳实践。通过为客户提供一键式训练、自动超参调优等能力,和高度自动化的参数配置机制,使得模型优化过程不再依赖于手动尝试,显著缩短了从模型开发到部署的周期,确保了模型在各类应用场景下的高性能表现,让客户能够更加聚焦于业务逻辑与创新应用的设计。
成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。
实世界中不断变化的数据环境。 ModelArts Standard中如何实现增量训练 增量训练是通过Checkpoint机制实现。 Checkpoint的机制是:在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。当需要增加新的数据
成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。
成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。
成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。
成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。
成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。
blocksize越小,文件数量的上限越小。 blocksize系统默认为4096B,总共有三种大小:1024B、2048B、4096B。 创建文件越快,越容易触发(机制大概是:有一个缓存,这块大小和上面的1和2有关,目录下文件数量比较大时会启动,使用方式是边用边释放)。 程序运行过程中,产生了core文件,core文件占满了"/"根目录空间。
硬件问题:如果GPU之间的NVLINK连接存在硬件故障,那么这可能会导致带宽受限。重新安装软件后,重启系统,可能触发了某种硬件自检或修复机制,从而恢复了正常的带宽。 系统负载问题:最初测试GPU卡间带宽时,可能存在其他系统负载,如进程、服务等,这些负载会占用一部分网络带宽,从而
在昇腾设备上,可能由于GPU内存墙导致在大shape下遇到性能问题,MindSporeLite提供了Flash Attention编译优化机制,可以考虑升级最新版本的MindSporeLite Convertor来进行编译期的算子优化,在大Shape场景下会有明显的改善。 同样功能的PyTorch
CPU使用率 业务中是否有大量使用CPU的代码,以及日常运行过程中CPU的占用率(占用多少个核心),以及使用CPU计算的业务功能说明和并发机制。 - 是否有Linux内核驱动 是否有业务相关的Linux内核驱动代码。 - 依赖第三方组件列表 当前业务依赖的第三方软件列表(自行编译的第三方软件列表)。