检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
raw”选项,请求Body填写示例如下。 其中,inputs参数为用户提出的问题,作为工作流的输入。plugin_id参数为插件ID,获取方式详见管理插件。 { "inputs": { "query": "你好" }, "plugin_configs": [
表2 盘古预测大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 发布预测类数据集 流通预测类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”,用于后续模型训练等操作。
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型超参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您
图1 数据集构建流程图 表1 数据集构建流程表 流程 子流程 说明 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 加工数据集 清洗数据集 通过专用的清洗算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数
自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、Function或者API通过配置方式快速创建为一个插件,并供Agent调用。 自定义知识库:平台提供了知识库功能来管理和存储数据,支持为AI应用提供自定义数据,并与之进行互动。多种格式的本地文档(支持docx、pptx、pdf等)都可以导入至知识库。 灵活
范围内进行预测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里x25公里的空间。通过降水模型预测未来的降雨情况,农民和农业管理者可以更有效地规划灌溉时间和频率,也能为可能发生的干旱提供预警,使农业部门能够及时采取措施,如推广节水技术或调整种植计划。 代码助手 在软
步骤。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据管理 > 数据指令”,在“自定义”页签,单击“创建指令”。 在“创建指令”弹窗中,输入名称、类型,选择用途与描述,单击“确定”,进入配置合成指令页面。
表2 盘古CV大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 加工图片、视频类数据集 清洗图片、视频类数据集 通过专用的清洗算子对数据进行预处理,确保数
表3 盘古NLP大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 加工文本类数据集 清洗文本类数据集 通过专用的清洗算子对数据进行预处理,确保数据符合模型训
式为默认格式、盘古格式(适用于训练盘古大模型时)。目前,仅文本类和图片类数据集支持发布为“盘古格式”。 通过这些功能,平台能够帮助用户科学管理和发布数据集,确保数据集质量符合大模型训练的需求,从而提高后续模型训练的效果。 数据发布意义 数据发布不仅仅是将数据转换为不同格式,还包括
工作流 功能介绍 通过调用创建好的工作流API,输入问题,将得到工作流执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/workflows/{workflow_id}/conversations/{conversation_id}
盘古科学计算大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 加工气象类数据集 清洗气象类数据集 通过专用的清洗算子对数据进行预处理,确保数据符合模型训
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
应用 功能介绍 通过调用创建好的应用API,输入问题,将得到应用执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/agents/{agent_id}/conversations/{conversation_id}
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。