检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
通过云图说,带您了解华为云 OCR基础课程 介绍文字识别服务的产品、技术指导和使用指南 OCR系列介绍 文字识别服务在计算机视觉的重要性、基本技术和最新进展 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这
为确保有可用的NLP大模型,请先完成NLP大模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 本实践将使用华为云文本翻译API,请先完成创建多语言文本翻译插件操作。 操作流程 创建盘古多语言文本翻译工作流的流程见表1。 表1 创建盘古多语言文本翻译工作流流程
huaweicloudsdkcore # 安装盘古服务库 pip install huaweicloudsdkpangulargemodels Go 安装华为云Go SDK库。 // 安装华为云 Go SDK 库 go get -u github.com/huaweicloud/huaweicloud-sdk-go-v3
给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求: Java SDK适用于JDK 1.8及其以上版本。 Python SDK适用于Python3及以上版本。 Go
本样例场景实现多语言文本翻译插件的创建与配置。 步骤1:获取文本翻译服务Token与调用地址 在创建多语言文本翻译工作流的实践中,需要调用华为云文本翻译服务API,调用前需获取文本翻译服务的Token,获取Token步骤如下: 使用IAM账号进入API Explorer服务,在左
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。 您可以使用统一
份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。 获取Token方法: Token可
够更有效地应对具体的任务需求。这一阶段使模型能够精确执行如文案生成、代码生成和专业问答等特定场景中的任务。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 NLP大模型选择建议
将进入提问器节点。该节点主要负责提问用户翻译需求(如翻译文本、目标语言等)。 文本翻译插件节点:在翻译意图分支中,文本翻译插件节点负责调用华为云文本翻译API,实现从源语言到目标语言的翻译过程。插件将翻译结果返回,传递给结束节点。 大模型节点:如果用户的意图属于“其他”意图分支(
洋要素预测的微调是在已有模型上添加最新数据,不改变模型结构参数或引入新要素,以适应数据更新需求。 在实际流程中,通过设定训练指标对模型进行监控,以确保效果符合预期。在微调后,评估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。 科学计算大模型选择建议
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
默认值为false,如果开启流式,请赋值true,同时n参数只能设置为1。开启流式开关后,API会在生成文本的过程中,实时地将生成的文本发送给客户端,而不是等到生成完成后一次性将所有文本发送给客户端。 temperature 否 Float 用于控制生成文本的多样性和创造力。 取值接近0表示最低的随机性,1表
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输
计费项 盘古大模型分为模型订阅、数据资源、训练资源和推理资源四个收费项。 模型订阅按照订阅时长预付费,提供1个月到1年供客户选择,自支付完成开始计费。 数据智算单元、数据通算单元按单元使用数量和时长后付费,时长精确到秒,数据托管单元按订购数量和时长预付费,提供1个月到1年供客户选择。
盘古CV大模型能力与规格 盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。以下是当前支持的模型
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人