检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?so
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?so
ModelArts。 验证OBS权限。 在左上角的服务列表中,选择OBS服务,进入OBS管理控制台。 在OBS管理控制台,单击右上角的“创建桶”,如果能正常打开页面,表示当前用户具备OBS的操作权限。 验证SWR权限。 在左上角的服务列表中,选择SWR服务,进入SWR管理控制台。
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
<=1,表示机器标注的置信度。 creation_time String 创建该标注的时间。是用户写入标注的时间,不是Manifest生成时间。 annotated_by String 标注人。 annotation_format String 描述标注文件的格式。默认为“PASCAL
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
以及数据标注要求,选择创建表格类型的数据集。填写数据集基本信息。 图5 表格类型的参数 名称:数据集的名称,可自定义您的数据集。 描述:该数据集的详情信息。 数据类型:根据实际需求,选择对应的数据类型。 更多参数填写请参考表3。 表3 数据集的详细参数 参数名称 说明 数据源(“OBS”)
service_url:成功部署推理服务后的服务预测地址,示例:http://${docker_ip}:8080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?so
Token接口获取(响应消息头中X-Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型 描述 tags 是 Array of TmsTagForDelete objects 要删除的标签列表。 表4 TmsTagForDelete 参数 是否必选
内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方案,高效解决业务内容审核的算力/国产化需求,助力企业业务稳健发展。 政府 提高公共服务的效率和质量,加强公共安全,优化政策方案和决策过程等。 金融 为金融机构带来更加高效、智能、精准的服务。 矿山 提供端到端AI生
py中添加一行代码os.system('nvcc -V)查看该镜像的cuda版本(customize_service.py编写指导请见模型推理代码编写说明)。 确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是否需要使用GPU,取决于的模型需要用到CPU还是GPU,以及推理脚本如何编写。
arams.json”中的参数,否则配置的参数将无法在推理过程中生效。 “inference_params.json”文件的参数请参见表4。该参数会显示在部署推理服务页面,在“高级设置”下会新增“参数设置”,基于配置的推理参数供模型使用者修改自定义镜像的部署参数。 表4 自定义推理参数说明
否则会导致无法获取到相关数据。 数据集要求 预测分析项目中需要使用到的数据集为表格数据集,数据格式支持csv格式。表格数据集的具体介绍请参见表格数据集。 将原始.xlsx格式的数据转换为.csv格式的数据的方法如下: 将原始表格数据(.xlsx)另存。单击“文件>另存为”,选择