检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当Tokens的免费调用额度使用完时,操作列的“体验”会置灰。 在业务环境中调用模型服务的API进行推理。 在预置服务列表,选择所需的服务,单击操作列的“更多 > 调用”,在调用弹窗中获取API地址和调用示例,在业务环境中调用API进行体验。操作指导请参见调用MaaS部署的模型服务。
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
在ModelArts进行模型训练时,会产生计算资源和存储资源的累计值计费。计算资源为训练作业运行的费用。存储资源包括数据存储到OBS或SFS的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值
在数据标注页面,单击右侧的“标签管理”,在标签管理页,显示全部标签的信息。 修改标签:单击操作列的“修改”按钮,在弹出的对话框中输入修改后的标签名、选择修改后的快捷键,然后单击“确定”完成修改。修改后,之前添加了此标签的音频,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
tch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
push文件时需要在授权方式框中输入token。 解决方案 使用token替换原先的密码授权方式,在git clone私有仓库和git push文件时,需要在授权方式框中输入token(见下图);具体获取token方式请参考查看GitHub中Personal Access Token信息。 父主题:
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
阶段。 资源利用率:在作业进程IO没有变化的情况下,采集一定时间段内的GPU利用率或NPU利用率,并根据这段时间内的GPU利用率或NPU利用率的方差和中位数来判断资源使用率是否有变化。如果没有变化,则判定作业卡死。 系统预置了卡死检测的环境变量“MA_HANG_DETECT_TI
进入某条运行中的工作流,单击右上角的“停止”按钮,出现停止Workflow询问弹窗,单击确定。 只有处于“运行中”状态的工作流,才会出现“停止”按钮。 停止Workflow后,关联的训练作业和在线服务也会停止。 复制Workflow 某条工作流,目前只能存在一个正在运行的实例,如果用
1、执行权重量化过程中,请保证使用的GPU卡上没有其他进程,否则可能出现OOM; 2、若量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。
表2 数据集输入位置,用于将此目录及子目录下的源数据(如图片/文件/音频等)同步到数据集。对于表格数据集,该参数为导入目录。表格数据集的工作目录不支持为KMS加密桶下的OBS路径。 work_path 是 表6 数据集输出位置,用于存放输出的标注信息等文件。 labels 否 List
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 e