检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。
更新数据集 功能介绍 修改数据集的基本信息,如数据集名称、描述、当前版本或标签等信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{projec
Standard功能介绍 Standard自动学习 Standard Workflow Standard数据管理 Standard开发环境 Standard模型训练 Standard模型部署 Standard资源管理 Standard支持的AI框架 父主题: 功能介绍
创建ModelArts数据清洗任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页
删除数据集 根据数据集ID删除指定的数据集 delete_dataset(session, dataset_id) 示例代码 删除数据集 from modelarts.session import Session from modelarts.dataset import Dataset
查看到此账号的委托配置信息。 图2 查看委托配置信息 Step1 准备训练数据 本案例使用的数据是MNIST数据集,您可以在浏览器中搜索“MNIST数据集”下载如图3所示的4个文件。 图3 MNIST数据集 “train-images-idx3-ubyte.gz”:训练集的压缩包文件,共包含60000个样本。
创建ModelArts数据校验任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页
创建ModelArts数据选择任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备 > 数据处理”,进入“数据处理”页面。 在“数据处理”
否 Boolean 是否导入数据,此参数当前仅表格数据集使用。可选值如下: true:创建数据集时导入数据 false:创建数据集时不导入数据(默认值) label_format 否 LabelFormat object 标签格式信息,此参数仅文本类数据集使用。 labels 否 Array
查询数据集详情 查询数据集的详细信息,包括数据集的样本信息、版本信息等。 dataset.get_dataset_info() 示例代码 查询数据集详情 from modelarts.session import Session from modelarts.dataset import
后就可以将.xlsx格式数据集转换为.csv格式。 表格数据集对训练数据的要求: 训练数据列数一致,总数据量不少于100条不同数据(有一个特征取值不同,即视为不同数据)。 训练数据列内容不能有时间戳格式(如:yy-mm-dd、yyyy-mm-dd等)的数据。 如果某一列的取值只有
可以查看该数据集的“目标位置”。 查看数据集是否已导入ModelArts。 返回ModelArts管理控制台,在左侧导航栏选择“数据集”,默认进入数据集新版页面。在新版数据集列表页,单击数据集名称左侧的,展开数据集,查看“导入状态”,导入状态为“导入完成”代表示数据集导入成功,且数据集正常。
创建数据集版本 为数据集创建新的版本。 dataset.create_version(name=None, version_format=None, label_task_type=None, label_task_id=None, **kwargs) 示例代码 示例一:为数据集创建新的版本
ts数据集。 提供多种数据接入方式,支持用户从OBS,MRS,DLI以及DWS等服务导入用户的数据。 提供18+数据增强算子,帮助用户扩增数据,增加训练用的数据量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多
创建数据集时,此OBS路径下的数据会导入数据集,后续如果直接在OBS中修改数据,会造成数据集的数据与OBS的数据不一致,可能导致部分数据不可用。如果需要在数据集中修改数据,建议使用同步数据源或4章节从OBS目录导入数据到数据集功能。 超出数据集的样本和标签配额,会导致数据无法正常导入。
删除数据集 功能介绍 删除数据集,但不删除数据集的源数据。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{project_id}/datasets/{dataset_id}
发布和管理AI Gallery数据集 托管数据集到AI Gallery 发布数据集到AI Gallery 管理AI Gallery数据集 父主题: AI Gallery(新版)
Profiling数据采集 在train.py的main()函数Step迭代处添加配置,添加位置如下图所示: 此处需要注意的是prof.step()需要加到dataloder迭代循环的内部以保证采集单个Step迭代的Profiling数据。 更多信息,请参见Ascend PyTorch
ModelArts为用户提供了标注数据的能力: 人工标注:用户创建单人标注作业,对数据进行手工标注。 智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 人工标注 对
栏中选择“数据准备> 数据标注”,进入“数据标注”管理页面。 在标注作业列表右侧“所有类型”页签下拉选择标注类型,基于“标注类型”选择需要进行标注的标注作业,单击标注作业名称进入标注作业标注详情页。 图1 下拉选择标注类型 在标注作业标注详情中,展示此标注作业下全部数据。 标注视频