检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用于连接ModelArts服务并在ModelArts资源上执行管理命令。ma-cli支持用户在ModelArts Notebook及线下虚拟机中与云端服务交互,使用ma-cli命令可以实现命令自动补全、鉴权、镜像构建、提交ModelArts训练作业、提交DLI Spark作业、O
发布后可获得数据集A和数据集B的Manifest文件。可通过数据集的“数据集输出位置”获得此文件。 创建一个空数据集C,即无任何输出,其输入位置选择一个空的OBS文件夹。 在数据集C中,执行导入数据操作,将数据集A和数据集B的Manifest文件导入。 导入完成后,即将数据集A和数据集B的数据分别都
on_name String 导出数据集版本的名称。 export_dest String 数据集导出类型。可选值如下: DIR:导出到OBS(默认值) NEW_DATASET:导出到新数据集 export_new_dataset_name String 导出新数据集的名称。 e
鼠标移动至节点名称上,复制需要退订的实例ID。 图3 复制实例ID Server购买订单里绑定的资源ID为Server ID,与Server产品所封装的BMS/ECS ID不同,若要退订Server,需要在ModelArts控制台的“资源管理 > AI专属资源池 > 弹性节点Server”中查询对应ID。
桶(存放代码)”,采用分布式训练。 表1 不同场景所需服务及购买推荐 场景 OBS SFS SWR DEW ModelArts VPC ECS EVS 单机单卡 按需购买。(并行文件系统) × 免费。 免费。 包月购买。 免费。 × 按需购买。 单机多卡 × 包月购买。 (HPC型500G)
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
Git插件相关操作,可以方便快捷地使用Github代码库。 Tabs 同时打开多个ipynb文件时,通过Tabs激活或选择文件。 Settings JupyterLab工具系统设置。 Help JupyterLab工具自带的帮助参考。 图15 ipynb文件菜单栏中的快捷键 表4 ipynb文件菜单栏中的快捷键 快捷键
必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/w
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
session 是 Object 会话对象,初始化方法请参考Session鉴权。 offset 否 Integer 查询作业的偏移量,最小为0。例如设置为1,则表示从第二条开始查。 limit 否 Integer 查询作业的限制量。最小为1,最大为50。 sort_by 否 String
训练作业中存在2个代码目录,一个是从OBS上传到ModelArts Standard训练容器中的代码目录OBS_CODE_DIR,一个是后续构建新镜像步骤ECS中构建新镜像中镜像的代码目录CODE_DIR。修改代码如图1。 图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PATH重新覆
训练作业中存在2个代码目录,一个是从OBS上传到ModelArts Standard训练容器中的代码目录OBS_CODE_DIR,一个是后续构建新镜像步骤ECS中构建新镜像(二选一)中镜像的代码目录CODE_DIR。修改代码如图1。 图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PA
任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。
本次批量服务的任务结束时间。 描述 您可以单击编辑按钮,添加服务描述。 输入数据目录位置 本次批量服务中,输入数据的OBS路径。 输出数据目录位置 本次批量服务中,输出数据的OBS路径。 模型名称&版本 本次批量服务所使用的模型名称及版本。 运行日志输出 默认关闭,批量服务的运行日志仅存放在ModelArts日志系统。
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
with_execution_id 表示创建目录时是否拼接execution_id,默认为“False”。该字段只有在create_dir为True时才支持设置为True。 否 bool 使用示例如下: 实现InputStorage相同的能力 import modelarts.workflow as
t.json" 同时也可以为“dict”类型的变量 ,如: data = { "is_training": "False", "observations": [[1,2,3,4]], "default_policy/eps:0" : "0.0" } path 否 String
任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user